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Abstract—Open HTTP proxies offer a quick and convenient
solution for routing web traffic towards a destination. In contrast
to more elaborate relaying systems, such as anonymity networks
or VPN services, users can freely connect to an open HTTP
proxy without the need to install any special software. Therefore,
open HTTP proxies are an attractive option for bypassing IP-
based filters and geo-location restrictions, circumventing content
blocking and censorship, and in general, hiding the client’s IP
address when accessing a web server. Nevertheless, the conse-
quences of routing traffic through an untrusted third party can be
severe, while the operating incentives of the thousands of publicly
available HTTP proxies are questionable.

In this paper, we present the results of a large-scale analysis of
open HTTP proxies, focusing on determining the extent to which
user traffic is manipulated while being relayed. We have designed
a methodology for detecting proxies that, instead of passively
relaying traffic, actively modify the relayed content. Beyond
simple detection, our framework is capable of macroscopically
attributing certain traffic modifications at the network level
to well-defined malicious actions, such as ad injection, user
fingerprinting, and redirection to malware landing pages.

We have applied our methodology on a large set of publicly
available HTTP proxies, which we monitored for a period of two
months, and identified that 38% of them perform some form
of content modification. The majority of these proxies can be
considered benign, as they do not perform any harmful content
modification. However, 5.15% of the tested proxies were found
to perform modification or injection that can be considered as
malicious or unwanted. Specifically, 47% of the malicious proxies
injected ads, 39% injected code for collecting user information
that can be used for tracking and fingerprinting, and 12%
attempted to redirect the user to pages that contain malware.

Our study reveals the true incentives of many of the publicly
available web proxies. Our findings raise several concerns, as we
uncover multiple cases where users can be severely affected by
connecting to an open proxy. As a step towards protecting users
against unwanted content modification, we built a service that
leverages our methodology to automatically collect and probe
public proxies, and generates a list of safe proxies that do not
perform any content modification, on a daily basis.

I. INTRODUCTION

Internet users often place their trust on systems that are not
under their control. From a security and privacy perspective, a
particularly critical class of such systems is HTTP proxies that
act as “stepping stones” between web clients and servers. By
relaying their traffic through a proxy, users can access content
and services that are otherwise blocked due to geographical
restrictions, content filtering policies, or censorship; and to
some extent preserve their anonymity, by hiding the originating
IP address from the final destination (although still exposing
it to the proxy).

Once the user traffic reaches the proxy towards its actual
destination, unless end-to-end encryption is used, a rogue or
compromised proxy can tamper with the transmitted content or
snoop for sensitive user data [27]. However, the problem is not
alleviated even when end-to-end encryption is used, as man-in-
the-middle attacks are still possible using fake or even valid—
obtained through compromised CAs or generated by powerful
adversaries—certificates, or SSL-stripping attacks [20]. The
potential harm due to network traffic interception attacks can
be severe, ranging from mere annoyance and inconvenience to
system compromise and theft of private information.

There has been a remarkable effort during the last years
by the community and some key organizations to make the
web more secure. The emergence of Certificate Authorities
that offer free TLS certificates such as Let’s Encrypt,1 and
the services launched by cloud providers such as CloudFlare2

and Amazon3 that enable certificate management without much
hassle, have resulted in increasing adoption of HTTPS. Only
recently the encrypted web traffic has surpassed the unen-
crypted traffic [11], but there is still a long distance to cover.

However, as a large volume of web content is still trans-
mitted unencrypted over HTTP, rogue web proxy operators
can monetize their traffic by altering the relayed content to
inject ads and affiliate links, prompt users to download spyware
and other unwanted software, or mount phishing attacks [16].
Even more deviously, instead of placing additional ads that
may annoy users, miscreants can replace existing ads in the
page with their own ads. This can be as simple as replacing
a website’s ad network identifier with the attacker’s own affil-
iate identifier, essentially stealing the revenue of the original

1 https://letsencrypt.org
2 https://www.cloudflare.com/ssl/
3 https://aws.amazon.com/certificate-manager/
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website (i.e., publisher). A more severe form of network traffic
manipulation is the inclusion of malicious JavaScript code for
mounting XSS, CSRF, or DDoS attacks [18], the injection of
exploits against the browser or other client-side software [28],
[33], or the infection of downloaded executables [24], which
can all result in full system compromise. In a proof-of-concept
implementation, Chema and Fernandez [7] deployed a mali-
cious proxy that modifies the originally requested JavaScript
files to dynamically fetch and execute malicious code. This
allowed them not only to collect cookies and user sensitive
information, but also to take control of the infected hosts and
build a botnet.

The proliferation and widespread use of web proxies ne-
cessitates an approach to detect, understand and measure the
extent of content modification by rogue web proxies. The ease
of setting up a free online proxy (e.g., on a cloud-hosted
virtual machine) and registering it on the numerous “proxy list”
websites, raises the question of whether miscreants employ
these tactics to attract and gain access to user traffic, and then
monetize it or cause further harm. Sporadic evidence so far
has shown that this is indeed happening in various types of
network relays, including VPN servers and anonymity network
relays [1], [3], [6], [16], [24], [35], [36], but the extent of the
problem in the front of web proxies remains unknown.

To understand and measure the extent of content modifica-
tion by rogue HTTP proxies, in this work, we have designed
a methodology for detecting and analyzing content alteration
and code injection attempts. Specifically, we have built a
framework that regularly collects HTTP proxies from several
“proxy list” websites, and tests them using a novel technique
based on decoy websites (dubbed honeysites) under our con-
trol. Furthermore, we have implemented a content modification
detection approach that operates at the level of a page’s DOM
tree, which can detect even slight object modifications. To
facilitate the analysis of content modification incidents, we
have implemented a clustering technique for grouping together
cases of content modification that follow similar patterns.

Instead of visiting real websites with and without a proxy
and comparing the difference in the retrieved content, the use
of honeysites allows us to avoid any false positive issues due to
highly dynamic content (e.g., news updates, rotating ads, and
time-related information), or content localization (e.g., due to
the proxy’s different location than the client). However, we
decided to also include one real website in our experiments
(http://bbc.com), even though we employ honeysites of differ-
ent complexity and content diversity. This allows us to verify
that the modifications observed in honeysites also occur in real
websites, and to investigate whether any sophisticated proxies
can distinguish real websites from honeysites and alter their
behavior accordingly to avoid being detected.

In this study, we monitored 15 public “proxy list” websites
for a period of two months, and systematically collected all the
proxies they offered. This process resulted in 65,871 unique
HTTP proxies. By sending multiple probes to each proxy we
found that 16,427 never appeared to be alive, and that, inter-
estingly, only 19,473 succeeded in fetching at least one of the
requested testing websites. Our results suggest that 5.15% of
the tested proxies perform some form of modification that can
be clearly considered as malicious. The observed modifications
included the injection of extra (or the modification of existing)

ads, the inclusion of tracking and fingerprinting libraries,
and the collection of data from social networking services
on which the user is already authenticated. Besides that, we
also discovered more severe and sophisticated instances of
malicious behavior, such as SSL stripping and redirection to
servers that have been reported to host malware.

By identifying and analyzing multiple cases of content
injection and modification, this study provides insights about
the behavior of rogue web proxies and reveals many patterns
that exist between these modifications. This enabled us to build
a web service for assessing web proxies on a daily basis, and
making publicly available a list of proxies that did not perform
any modification during our tests.

In summary, our work makes the following contributions:

• We present an approach for the detection of unwanted or
malicious content modification by rogue HTTP proxies,
based on the observation of discrepancies in the retrieval
of content through the tested proxies. Our technique uses
decoy websites, dubbed honeysites, that have been de-
signed with a different degree of complexity and external
content dependencies, to allow differentiating between
different types of content injection or alteration.

• We have performed a large-scale measurement study of
open HTTP proxies retrieved from public “proxy list”
websites, and used our technique to assess the extent
of malicious content modification by rogue proxies. Our
findings suggest that 5.15% of the tested proxies engaged
in some form of malicious content modification.

• We provide an in-depth analysis of indicative content
modification cases that we observed, which involved the
injection of ads, tracking and fingerprinting code, private
information collection, and malware distribution.

• We have implemented a service that automatically collects
and tests HTTP proxies on a daily basis, for generating
and publishing an up-to-date list of proxies that do not
perform any content modification or injection. The service
is available at http://proxyscan.ics.forth.gr.

II. BACKGROUND AND RELATED WORK

A. HTTP Proxies

Web proxies are one of the most widely used types of
network relays mainly due to their ease of use, especially for
users that simply want to bypass filtering restrictions or access
content that is not available in their country. Many web proxy
websites allow users to conveniently type in the URL of the
page they want to visit, which is then rendered directly, usually
within a frame. Legacy HTTP or SOCKS proxies require users
to manually configure their browser to explicitly use the proxy
by entering the IP address and port of the proxy into the
browser’s settings window. Many browser extensions facilitate
this process, offering the convenience of single-click buttons
for toggling a configured proxy on and off.

Both types of web proxies are widely used, as it is evident
from the numerous websites dedicated to providing up-to-date
lists of working web proxies around the world. Besides the
URL or the pair of IP address and port of each proxy, these lists
typically provide information about the geographic location of
the proxy (important for users who want to access content
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available only in certain countries), its supported protocols,
the last time the proxy was checked for responsiveness, and
even statistics about its uptime and access latency.

It is common for a proxy list website to provide information
about hundreds or even thousands of recently checked proxies.
Considering that there are numerous independent proxy list
websites, we estimate the number of publicly accessible web
proxies to be in the order of tens of thousands. This conserva-
tive estimation is based on the number of proxies listed in just
the top ten proxy list websites returned by a Google search
for “HTTP proxy list,” and is indeed, in line with the numbers
reported in our study.

B. Detecting Content Alteration and Fraudulent Ad Traffic

A large body of prior work has focused on security issues
related to the ad serving ecosystem. Li et al. [29] shed light
to fraudulent activities in online ad exchanges. In the front
of click fraud, Dave et al. [9] proposed a methodology for
measuring the extent of click-spam, and proactively detecting
different simultaneous click-spam attacks. To counter click
fraud, Hamed Haddadi [14] proposed the concept of “Bluf
ads,” which are ads meant to be detected and clicked only by
automated crawlers or click-fraud workers.

Malvertising is also an important threat that has received
attention, mostly focusing on methods to detect and block ma-
licious ads. Li et al. [19] performed a large-scale study of ma-
licious ads, and built MadTracer, a defense that automatically
generates detection rules and uses them to block malicious ads.
Ford et al. [12] studied the particular class of malware delivery
that leverages malicious Flash advertisements to infect web
site visitors, and developed an automate Flash content analysis
technique for the detection of malicious behavior.

Once malware has infected a user system, it often uses ad
injection to monetize the victim’s web browsing activity. In a
large-scale study of ad injection on infected machines, Thomas
et al. [30] followed a similar approach to ours, by inspecting a
page’s DOM tree, to identify the injection of malicious content.
The actual identification was based on a whitelist of legitimate
content, similar in spirit to content secure policy (CSP) used
by modern browsers for whitelisting JavaScript code. This
approach has the limitation that if the injected code involves
domains that are included in the whitelist (e.g., when replacing
existing ads with malicious ads from the same ad network),
then the injection will go unnoticed. Our content modification
detection approach does not rely on a whitelist, and thus can
identify any addition or alteration of an element in the DOM
tree, even if it involves the same ad network. Their results
indicated that 5% of unique IP addresses accessing Google
were infected with malware that injected ads. Operation Ghost
Click, one of the largest cybercriminal takedown efforts in
history, took down an ad fraud infrastructure that affected 4
million users infected by the DNS changer malware, and made
its owners 14 million USD over a period of four years [2].

Many efforts have focused on designing solutions to detect
and prevent content modification. Vratonjic et al. [32] antic-
ipated the problem of in-line ad replacement or modification
through man-in-the-middle attacks, and proposed a collabora-
tive technique to preserve the integrity of ads—our findings
highlight the need for such schemes, and the necessity of

preserving network traffic integrity in general. Reis et al. [26]
proposed “web tripwires,” a method that allows publishers to
include a verification check in their page that compares the
DOM a user received with the DOM the publisher sent. Arshad
et al. [4] developed OriginTracer, a tool that notifies the user
about which party is responsible for any modifications in a
loaded page’s content by tracking DOM element alterations
(e.g., due to browser extensions). The same authors have
developed Excision [5], an in-browser mechanism that relies
on an enhanced version of the DOM tree to keep track of the
relationships between the resources of a page in order to block
malicious third-party content.

Although individual websites can detect to a certain extent
modifications to their client-rendered content using the above
approaches, these mechanisms are not widely adopted. In con-
trast, our efforts focus on the detection of content modification
by scanning publicly accessible HTTP proxies to uncover
various forms of traffic modification.

C. HTTP Proxy Studies

As discussed in the above, recent research has shown that
ad injection and hijacking has been impacting tens of millions
of users worldwide through malicious browser extensions and
malware infections [2], [30]. Therefore, it is natural to expect
miscreants to employ similar monetization strategies through
the deployment of rogue network relays. Sporadic evidence so
far has shown that traffic interception by rogue network relays
is indeed happening [1], [3], [6], [16], [24], [35], [36].

O’Neill et al. [23] developed a probing tool, which was
deployed through Google AdWords campaigns, and measured
the prevalence of TLS proxies. They found that one in 250 TLS
connections are TLS-proxied, and identified over 3,600 cases
of malware intercepting a TLS communication. Holz et al. [17]
developed the Crossbear system to discover TLS man-in-the-
middle attacks by tracking IP routes and comparing certificates
with distributed nodes they have deployed across the Internet.
Carnavalet et al. [10] uncovered security vulnerabilities in TLS
proxies used by antivirus and parental control applications,
allowing attackers to mount man-in-the-middle attacks. Weaver
et al. [34] leveraged the ICSI Netalyzr client base to measure
the prevalence of HTTP proxies, and found that 14% of the
tested clients made use of a web proxy. Also, they detected
and classified several kinds of proxies, and observed cases of
content modification due to client-side security software (e.g.,
antivirus and firewall products) or server-side compression
and transcoding. Chung et al. [8] used a paid proxy service
whereby users can route their traffic via other users to uncover
content manipulation in end-to-end connections.

In contrast to the above studies, our research focuses on
publicly available HTTP proxies that users knowingly employ
(for various reasons, such as to access otherwise blocked
content, seek protection when using untrusted networks, and
preserve their anonymity), and which are available via numer-
ous “free proxy list” websites. Furthermore, our methodology
is different since we focus on detecting modifications in the
DOM tree of the web page served to the user. Besides some
limited evidence that open HTTP proxies are indeed involved
in suspicious activity [15], [16], our effort is the first to perform
a large-scale, systematic analysis of the extent and nature of
content modification performed by open HTTP proxies.
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III. METHODOLOGY

In order to understand the behavior of open HTTP proxies
and measure the extent of content modification in the relayed
user traffic, we have designed a methodology for systematically
collecting web proxies from several proxy list websites and
testing them using two honeysites under our control. We have
also implemented a content modification detection technique
that compares the DOM tree of the web page fetched by a
proxy to its static template. Furthermore, in order to facilitate
analysis and assessment of the behavior of content modifying
proxies, we have implemented a two-level clustering technique
that groups together similar content modification incidents.

As malicious behavior, in this work, we consider content
modifications and injections that (i) enable the proxy provider
to have monetary gain (ii) affect user privacy and (iii) can lead
to browser/system compromise. More specifically, we consider
as malicious the injection of ads, the injection of JavaScript
code for cryptocurrency mining, the replacement of existing
ads, and cases where the rogue proxy replaces the website’s
ad network identifier with its own affiliate identifier for stealing
the website’s revenue. Furthermore, we consider as malicious
any attempt by a proxy to collect sensitive user information
and information regarding the user’s system (i.e., OS, browser)
that can be used for user profiling and tracking, to set and read
cookies, harvest credentials etc. In addition to the above, we
consider SSL-stripping, redirection to fake/phishing websites
and the delivery of malware and exploits. It should be noted
though that we do not consider as malicious the removal of
ads by “privacy preserving” proxies, as this modification does
not negatively impact the user but aims to protect user privacy.

A. Collecting a Set of Proxies

To gather a representative set of proxies, we first collected
a set of reliable proxy list websites, and then collected the
proxies listed on each website. We began with a Google search
query for “HTTP proxy list” (in April 2017), and collected the
first 50 results returned. We followed this approach, as a typical
user will most likely use a search engine to find websites
offering proxies. Among these 50 websites, there were some
that offer their lists only with a paid subscription, which we left
out. Also, we identified a few cases of almost identical proxy
list websites, which are actually managed by the same entity.
For each such case, we decided to only use the one website
that offered the most proxies, as the great majority of the other
websites’ proxies were also included in the considered one.
After the above, we ended up with 15 different popular proxy
list websites that included a representative set of the public
proxies available to users at the time of our experiment.

We managed to automatically crawl 10 of the above sites,
while we manually collected the proxies from the other five.
The crawler was visiting all the pages of each one of these
websites on a daily basis, for a period of two months (mid
April – mid June, 2017), collecting all available proxies and
updating our dataset with any previously unseen ones. The
other five proxy list websites employed various techniques
(e.g., user registration and CAPTCHAs) to prevent automatic
crawling, and thus we manually exported all the proxies they
provided in each of our visit. We performed the manual col-
lection once every 10 days, for the duration of our experiment.

Lastly, in order to draw comparisons between public prox-
ies and subscription-based ones, we purchased a one-month
subscription in one such proxy list website, and collected every
five days all the proxies it offered. Our efforts, both automated
and manual, resulted in 65,871 unique proxies.

B. Probing and Testing the Proxies

As mentioned, our crawling module visits a set of proxy
list websites and updates the set of proxies to be tested by our
framework on a daily basis. As the number of proxies in our
dataset increases every day, and as we intend to test them on
a daily basis for three different websites, we need a scalable
architecture that can support multiple parallel tests.

Through some preliminary experimentation we found that
many proxies tend to be slow, mainly due to the high load they
have, and that sometimes they appear as non-responsive even
though they are alive. Although this behavior is expected to a
certain degree, as it can be explained by their public nature, it is
important for our system to succeed in testing them. Thus, we
decided to attempt multiple times throughout a day to test each
proxy, and to set a rather high timeout interval (180 seconds).

However, the multiple attempts to test a proxy, in com-
bination with the high timeout interval, impose a significant
overhead on the system, which becomes critical as the number
of proxies increases. A first step towards avoiding unneces-
sary latency overheads, is to identify which proxies are non-
responsive for a long time (i.e., not alive) and avoid attempting
to test them at that time. To accomplish that, we have designed
a module that sends a few TCP probes to each proxy in our
dataset on a regular basis, in order to identify which of them
are alive and responding to incoming connections.

Our framework has been designed to send such probes to
all the proxies in our dataset almost every hour, 22 times per
day. However, for simplicity we decided to suspend probing
and testing during the crawling phase, and to resume it after
the dataset is updated. If a proxy is found to be alive by at least
one probe, it is included in the set of proxies to be tested that
day. In this way, we avoid testing proxies that continuously do
not respond to our probes, but attempt multiple times to test
proxies that appear to be alive, but possibly are temporarily
unavailable. This approach does not implicate that eventually
all these proxies will be found to work properly, but it allows
us to identify long-term non responsive proxies and focus our
efforts on the ones that appeared to be alive recently.

For testing a proxy, our system uses Selenium to configure
and launch an instance of the Firefox browser, and requests
the three testing websites in parallel, by opening three different
tabs. If the testing websites are fetched and rendered correctly,
the framework saves the downloaded web pages for content
modification detection, as it is discussed in the following. If
a timeout occurs and the requested websites have not been
fetched, the proxy is added to a queue in order to be tested
again later. In that way we focus our attempts on re-testing
proxies that did not succeed in fetching the test websites.

In order to achieve scalability and manage testing a large
number of proxies, our framework divides the set of proxies to
be tested into multiple distinct subsets and assigns a subset to a
different machine. Each machine is responsible to send probes
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Fig. 1. The methodology followed for detecting content modifications in websites fetched by a proxy. Initially, our framework downloads the target website
(or honeysite) multiple times without a proxy, and compares the DOM tree of these downloads, to create a static template of the web page (left). For detecting
content modification, it fetches the website through a proxy and compares its DOM tree with the previously generated static template (right).

to the proxies in its subset, for generating its list of proxies
to be tested, and starts testing them by launching in parallel
up to 60 instances of Firefox. As mentioned previously, each
browser instance corresponds to a specific proxy, and requests
for retrieving the three testing websites are sent in parallel.

For the purposes of this study, our experimental setup was
comprised of two commodity machines. This setup could test
up to almost 58 thousand proxies per day, and additional
machines could be easily included if needed, as the framework
was designed to scale. Since the number of alive proxies in a
single day never surpassed 22 thousands in our experiment, as
it will be discussed (see Figure 3), we were able to test them
multiple times per day, without needing additional resources.

C. Use of Honeysites

Conceptually, a simple approach for detecting content
modification by rogue network relays is to visit a given public
web page twice, once connecting directly and once through the
relay, and comparing the fetched content. In practice, however,
this approach is not very effective for two main reasons. First,
parts of the page may change due to inherently dynamic con-
tent, such as news updates, time-related information, rotating
ads, and various forms of content personalization. Second, the
geographic distance between the client and the proxy may
also result in differences due to content localization, as many
websites switch to pages of different language (and possibly
region-specific content) based on the visitor’s origin. On the
other hand, selecting only simple static pages for probing, may
miss rogue proxies that focus only on specific types of content
that can be monetized, i.e., ads that already exist in the page.

The complexity of having to distinguish between legitimate
content modification due to the inherent dynamic behavior of
a fetched web page, and any kind of content modification
performed by the web proxy itself, makes this simple approach

prone to false positives. For this reason, we decided not to
rely on visiting real web pages, but to primarily focus on
an alternative approach that relies on decoy websites under
our control. Specifically, we deploy two honeysites of different
levels of complexity and dependence on (controllable) third-
party content (e.g., ads).

The reason for using two honeysites of different complexity
and content, is that we do not only want to detect content
modification events, but also to examine whether the behavior
of the tested proxies changes according to the type of content
relayed through them (e.g., detect whether a proxy modifies
only JavaScript files). The main difference between our hon-
eysites lies in the degree of dynamic content generated by
the server, and on the third party resources they use. The first
honeysite (h1) consists of a simple, completely static web page.
The second one (h2) is a website created in WordPress,4 which
contains some JavaScript elements and resources, an iframe
that loads some external content, and three fake ads.

The fake ads included in h2 were created based on actual
source code provided by three popular ad networks: Google
AdSense,5 Media.net6 and BuySellAds.7 We did not actually
register for displaying ads from these networks, but just used
the example ad inclusion code snippets they provide and set the
publisher’s ID to an invalid, non-existent value. This ensures
that the included ads will not be rendered, as the requests for
fetching them will typically fail. What is important, however,
is that these fake ads look (from the perspective of the
proxy) identical and indistinguishable from legitimate ones.
Having a honeysite with embedded ads (h2) allows us to
differentiate between proxies that perform unconditional con-

4 https://wordpress.com
5 https://www.google.com/adsense
6 http://www.media.net
7 https://www.buysellads.com
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tent modification, from proxies that inject content depending
on the presence of ad networks in the fetched web page
(e.g., replacing the existing legitimate publisher’s ID with the
attacker’s registered ID, injecting additional ads, or completely
replacing the honeysite’s fake ads).

For testing a given proxy, we automatically browse to
the honeysites through the proxy and compare the retrieved
content with the original content that was served by our web
server. A benefit of this approach is that, by having control
of both ends (i.e., client and server), we can precisely identify
whether any part of the page was modified, or whether new
additional content was injected. However, we cannot preclude
the possibility of malicious proxies that do not inject or modify
content on every web page they fetch, but somehow determine
which downloads to alter, in order to avoid being detected.

To prevent any potentially sophisticated malicious proxies
from suspecting the true purpose of our honeysites, and thus
avoid exhibiting any inappropriate behavior, as an initial mea-
sure we decided to use Amazon’s S3 cloud service for hosting
the honeysites, instead of using any other infrastructure (e.g.,
servers hosted in our academic institution’s network). Towards
that direction, we also decided to visit a popular real web page,
alongside with the honeysites we test regularly, in order to
detect and further investigate the behavior of any such proxies.

D. Detecting Content Modification

Detecting content modification by a proxy for the static
honeysite h1 is straightforward, given that its “ground truth”
content never changes. The dynamic content of h2 however,
makes the detection of content modifications more challenging,
as we have to distinguish between changes due to the dynamic
content itself and changes due to potential content injection
or modification by the tested proxy. To achieve that, we
initially download the dynamic honeysite multiple times from
a trusted computer (without using a proxy) and compare its
content in order to generate a static template. Specifically, our
approach constructs and traverses the DOM tree of the trusted
downloads, and compares the DOM elements to identify which
elements remain the same between different downloads. By
comparing the DOM elements and their values, we are able
to identify and mark the static and dynamic elements of
the honeysite, and therefore to create a static version of the
honeysite that can be used as a template.

After creating the static template of each honeysite, we use
an approach similar to the process followed for generating the
templates themselves, in order to compare the DOM tree of
the websites fetched by proxy to the corresponding template.
An overview of our methodology is presented in Figure 1.
This approach can effectively identify content modification in
most cases, as the malicious proxies typically inject new rogue
elements or try to modify existing ones. Our system is able to
detect changes in the DOM tree when new rogue elements are
inserted, and when the value of the elements that are marked
as static in the template changes. A limitation, however, of
this approach is that it cannot detect changes in the value of
dynamic elements, as these values legitimately change between
different downloads.

We can overcome this limitation by carefully selecting the
types of dynamic content to be included in our honeysite,

so that it is generated only in a predictable way. It is noted
that our approach takes into consideration the position of
each dynamic element during the generation of the template,
and thus, during the comparison between the proxy fetched
web page with its template, our system expects to identify
specific dynamic elements at particular positions in the page’s
DOM tree. Furthermore, by specifically including dynamic
content that is generated in a predictable way, we are able to
identify any non-anticipated changes in this content. That is,
by carefully choosing dynamic content that is fetched from
a particular source, we expect to observe dynamic content
from that source.The only case of modifications that can go
unnoticed by our system is when a malicious proxy alters
a dynamic element in the expected way (e.g., replacing an
existing ad with a different ad, from the exact ad network).

E. Clustering Content Modification Incidents

After some initial experimentation using the methodology
described previously, we observed a very large number of prox-
ies that modify the content of the honeysites they fetch, either
by injecting new elements or by modifying existing ones. In
particular, our methodology revealed DOM tree modifications
in thousands of cases from both honeysites. To facilitate the
analysis of all the content modification incidents detected, we
designed a two-level content modification clustering approach
for identifying injections that follow similar patterns and
grouping them together.

At first, we traverse the DOM tree of each download and
we identify the position and type of all the injected elements.
Our initial clustering approach categorizes these downloads
according to the difference between the expected DOM el-
ement (at a specific position of the DOM tree according to
the template), and the occurring element. As an example, all
the cases where an iframe element is expected at a particular
position of the template’s DOM tree, but a script element
occurs at that particular position in the DOM tree of the
downloaded honeysite, end up in the same cluster.

After that, for implementing a more fine-grained clustering
we compare the DOM tree of every instance in each group (i.e.,
first-level cluster) with all the other modification instances in
that particular group. If the DOM tree of two such instances is
exactly the same, which means that the same elements appear
in the same order and have the exact same content, we add
them in the same second-level cluster. It should be noted that
during this process we do not take into account the dynamic
elements of the DOM tree, which legitimately change in the
trusted downloads, but as discussed previously, we use of form
of whitelisting to detect changes in this elements. Our two-level
clustering approach minimizes the effort needed for manually
analyzing the observed content modification incidents, as we
only need to manually inspect a few downloads from each
cluster to understand that particular proxy behavior.

The manual effort can be further reduced by comparing
a sequence of DOM tree elements between the different
clusters. By keeping track of the DOM tree elements and their
position (and their order) in the template of the honeysite,
and comparing them with the sequences of elements in every
other cluster, it becomes easy to identify proxies that do not
inject any new rogue elements, but instead, modify the testing
websites by removing content (e.g., remove existing ads).
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TABLE I. PROXIES COLLECTED AND TESTED IN OUR EXPERIMENT

Tested Proxies Content Modifying Proxies
Total Alive Working Total Malicious

65,871 49,444 19,473 7,441
(38.21%)

1,004
(5.15%)

Additionally to the manual inspection of representative
content modification cases from each cluster, we employed a
simple form of dynamic analysis to gain better understanding
of the functionalities performed by the injected code. To that
end, we configured the Firefox browser with the Firebug
plugin, and rendered a few downloads from each cluster, while
monitoring all the outgoing requests and fetched resources. By
executing the injected code in a controlled environment and
inspecting all the HTTP requests, we were able to detect and
analyze additional JavaScript files that are fetched dynamically,
and to understand the functionalities of obfuscated code.

Our analysis revealed cases of malicious proxies that set
tracking pixels and cookies, inject ads, and perform browser
fingerprinting, among others. Also, we were able to determine
the nature of the ads shown to the user, and whether these ads
are inappropriate or intrusive (e.g., scareware). In that way,
we ensure that all the proxies we characterized as malicious,
indeed performed content injection or modification that can
significantly affect, or even worse, threaten the user. A detailed
analysis of our findings is presented in Section V.

IV. ANALYSIS OF PROXY CHARACTERISTICS

As mentioned, we collected a set of proxies by crawling 10
popular proxy list websites on a daily basis, in an automated
way, and by systematically visiting five more proxy list web-
sites, and a subscription-based one, and manually exporting all
the proxies they offered. This process resulted in the collection
of 65,871 unique HTTP proxies in total.

According to our methodology, once the crawling phase is
completed, our system starts sending a few TCP probes every
hour to each proxy in the updated dataset, for determining
which of them are alive and accept incoming connections. We
do follow this probing technique in order to identify (tem-
porarily) non responding proxies and thus avoid attempting to
test them. When a previously non-responding proxy responds
to our probes, it is immediately included in the set of proxies
to be tested on that day. While the number of proxies that
appeared to be alive each day of the experiment was not high,
we identified that in total 49,444 proxies responded to some of
our probes during the period of our experiment (see Table I).

Interestingly, from the 49,444 proxies that appeared at
some point to be alive, after responding to some of the probes,
only 19,473 (38.38%) succeeded in fetching the requested
testing websites when tested (we refer to them as “properly
working” proxies). As discussed in the following, many of the
proxies we characterize as “non-working” provided informa-
tion that indicate their type of failure. We observed that most of
these proxies failed to fetch the testing websites due to network
and DNS errors. On the contrary, a large fraction of the non-
working proxies never fetched any of the requested websites
or provided any information about their type of failure, or in
general, any information indicating that they are still alive,
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Fig. 2. Total number of proxies collected from each proxy list website
during the two-month period of the study, through automated daily crawling
(A1–A10) and manual collection (M1–M5), as well as the proxies collected
from a subscription-based website (S1). Additionally, information regarding
the number of proxies that successfully fetched the requested websites, and
percentage of proxies found to perform malicious content modification.

after responding to some of our probes. However, this is not
surprising, as we decided to collect all the proxies that appear
in the crawled proxy list websites, and not only those having
good statistics such as high responsiveness.

By following the previously described methodology for
detecting content modification, we observed that 7,441 proxies
(38.21% of the properly working ones) altered the content of
the retrieved web page in some way. As the HTML DOM tree
of the fetched pages may be modified by a proxy for various
legitimate reasons, the observation of a modification event does
not necessarily mean that the tested proxy is malicious, or
that its actions can negatively impact a user. The main type of
content alteration we observed was due to “privacy-protecting”
proxies that block trackers and ads that exist in the retrieved
page. We also observed proxies that inject elements or iframes
that are empty, or modified the DOM of the page in such a
way that cannot be classified as malicious. After employing
our clustering method and manually inspecting all the clusters
we identified in total 1,004 (5.15%) proxies that performed
some form of malicious or unwanted modifications. A detailed
analysis of the malicious proxies is presented in Section V.

A. All Proxies Collected and Tested

The total number of proxies we collected from each proxy
list website, as well as the number of the properly working
ones is presented in Figure 2. During the collection process we
noticed that most of the sites ask for a money fee to generate
proxy lists in a more usable format, and on occasion claim to
provide even more proxies to paying users. Also, it became
apparent that some websites offer far less proxies than they
claim to have, and less surprisingly, some of these proxies are
listed in multiple websites. Indicatively, the collection process
resulted to 144,349 proxies in total, from all the websites,
which correspond to only 65,871 unique proxies in our set.

1) Public proxy list websites: As presented in Figure 2,
the websites that impose some restrictions with regards to
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TABLE II. COMPARISON BETWEEN PROXIES COLLECTED FROM
PUBLIC PROXY LIST WEBSITES AND A SUBSCRIPTION-BASED WEBSITE

Category of Proxy Lists Total Working Malicious

1. Free Publicly Available 58,435 14,973 (25.62%) 872 (5.82%)
2. Only Subscription Based 3,278 990 (30.20%) 61 (6.16%)

3. Appeared in Both Categories 4,158 3,510 (84.41%) 71 (2.02%)

automatic crawling, from which we collected proxies manually
(i.e., M1–M5), have a higher fraction of properly working
proxies, compared to the automatically crawled websites (i.e.,
A1–A10). Our tests suggest that 53% to 63% of the proxies in
these websites succeeded in fetching the requested web pages,
and that around 2% to 4% of the proxies in these websites are
malicious. On the other hand, for the automatically crawled
proxy list websites, we observe lower percentages of working
proxies, in general, and proxy list websites such as A3, A5
and A9 (i.e., https://hidemy.name, https://www.us-proxy.org and
http://www.idcloak.com) that have very few malicious proxies
(i.e., less than 1%), while others reach 6% and 7%.

Two notable cases of proxy list websites that interestingly
present contrary behavior are A1 and A9. The former listed and
provided more proxies than any other visited website (23,262),
but had the lowest percentage of working proxies (26.4%),
and the highest percentage of malicious ones (7.08%). On the
other hand, A9 offered only 2,354 proxy during the two month
period of our experiment (i.e., second lowest) but impressively,
88.9% of them were found to be working properly, and less
than 1% were found to be malicious. These observations lead
to the assumption that the former website focuses on having
a large volume of proxies, possibly by collecting and listing
proxies that appear in other websites, while the latter makes
more efforts to only provide highly reliable proxies.

2) Subscription-based proxy service: For being able to
draw comparisons between free public web proxies and proxies
acquired from a paid service, and for detecting if they exhibit
significantly different behaviors, we bought a one-month sub-
scription from a proxy list website that claims to own over
50 thousand proxies. As we gained access to the site’s proxy
lists for a month, we visited it six times in total, every five
days, and collected all the proxies offered (S1 in Figure 2).
We discovered that, in reality, this website provided only about
two thousand proxies each time it was visited, and claimed that
only these proxies were available at the time of visit. In total,
we collected only 7,436 proxies from the subscription-based
website, and interestingly, only 3,278 of them were not already
included in our set.

In Table II we present statistics for (1) the proxies collected
from public proxy list websites (2) the proxies offered only by
the subscription-based website and (3) the proxies appeared
in lists of both the public websites and the subscription-based
one. As shown in Table II, the percentages of properly working
proxies in (1) and (2) are very similar, 25.62% and 30.20%
respectively. After testing and assessing the proxies in our
dataset, we identified that these two categories have a similar
percentage of malicious proxies, i.e., 5.82% and 6.16%. How-
ever, interestingly, we identified that the proxies found in both
groups have a significantly higher working rate (84.41%) and
the smallest malicious rate (2.02%). Furthermore, regarding
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Fig. 4. Number of proxies our crawler automatically collected from the 10
proxy list websites each day of the experiment (i.e., A1–A10 in Figure 2).

the malicious proxies detected in the free and subscription-
based websites, we did not identify any significant differences
in the modifications they perform, and in general, in the be-
havior they exhibit. Specifically, for the proxies collected from
the subscription-based website, we identified modifications in
accordance to all the different high-level classes of malicious
behavior that are presented in Section V.

3) Daily statistics of proxies: In order to understand the
dynamics of the proxy collection process, and how our probing
mechanism affects the scalability and performance of the
system, in Figure 3 we present the total number of proxies
in our dataset after the daily collection process is completed
and the set of proxies is updated. In this figure, we can spot
the contribution of the manual collection process, as a small
increase (i.e., a noticeable step) is observed for the sixth,
eleventh day etc. In addition, Figure 3 presents the number of
proxies that had been found to accept incoming connections
(i.e., alive), each single day of the experiment, as well as
the number of the properly working proxies(i.e., retrieved the
requested websites). An interesting observation is that, while
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the number of daily alive proxies increases, in general, it
increases in a much lower rate than the collected proxies, and
while at the beginning of the experiment about half of the
proxies were alive, only one third is alive in a given day after
two months. In addition, as depicted in this figure, the number
of working proxies per day is around four thousands, for the
whole duration of the experiment.

In Figure 4 we present the number of newly found proxies
per day, for the duration of our experiment. We collected close
to 10 thousand proxies each day from the sites we crawled
automatically (i.e., A1 - A10) and only about 4% to 6% of
them were new to our set. It is noted that the two sharp drops
shown in Figure 4 are due to one proxy list website that was
inaccessible for these two days. Interestingly, this drop did not
affect the number of new proxies found, which indicates that
the particular site does not update its list very often.

4) Occurrences in proxy list websites: Figure 5 presents
the cumulative fraction of proxies in regards to the number of
times each proxy occurs in the crawled proxy list websites (A1
- A10). This provides interesting insights about the persistence
of proxies in these websites, and how the proxies appear across
multiple different websites. Interestingly, we observe that the
great majority on non-working proxies appear only very few
times in the proxy list websites. Specifically, we observe that
around 64% of the non working proxies appeared only once
(in just a single website), and that 88% of them appeared only
up to five times. This suggests, that many proxy list websites
regularly update their lists by removing proxies that are non
working. However, it is observed that about 10% of the non-
working proxies appear multiple times, which span up to the
whole duration of our experiment. On the other hand, only
20% of the working proxies appear only once, and about half
of them (53%) up to five times. Interestingly, we observe that
the malicious and benign proxies follow similar distributions to
the working and non-working ones, respectively. Even though
the number of occurrences depends on the first time a proxy
was added to a list, this figure shows significant differences
regarding the persistence of proxies in the crawled websites.

5) Lifespan and reliability: As discussed in Section III-B,
our framework sends TCP probes to each proxy 22 times
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Fig. 7. Number of proxies found to be alive and working each day of the
experiment, from the initial set of proxies collected on the first day.

every day, almost in every hour, in order to identify which
proxies are listening for incoming connections. As we send
probes to all the proxies almost every hour, for the duration
of the experiment, these probes can be used for estimating the
fraction of time each proxy was alive. In Figure 6 we present
the CDF of proxies that were found to be alive by our probes.
As can be seen in Figure 6 (top), 15.66% of all the alive in our
dataset responded to very few of our probes (less than 0.1%),
around 50% of them were found to be alive less than 22% of
the times they were probed, and only around 10% responded
to more than 72% of the probes sent.

When focusing our analysis only on the properly working
proxies, we observe that the legitimate proxies respond to a
significantly large number of our probes, and that in general
these proxies are alive for longer times. Specifically, we
observe that 50% of the legitimate proxies respond to more
that 64% of our probes, and that around 40% of them respond
to more than 90% of the probes sent. Interestingly, the proxies
we identified as malicious appear to be alive significantly
fewer times. We observed that 50% of the malicious proxies
responded to less than 9% of our probes, and that only 20% of
them were found to be alive by more than 37% of our probes.
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TABLE III. ERROR MESSAGES COLLECTED FROM THE NON-WORKING
PROXIES

Type of Failure Number of Proxies

Network Errors 15,133
Not Permitting Use 1,087
Misclassification 89
Partial downloads 27

Total 16,336

Furthermore, in order to examine the longterm lifespan
of proxies, in Figure 7 we present the number of alive and
properly working proxies for each day of the experiment, by
considering only the initial 12,078 proxies we discovered on
the first day of the experiment. We observe that the percentage
of alive proxies starts at 70.25%, then drops to 52.06% after
a month, and at the end of the experiment reaches 44.93%.
Also, it is clear that while 46.40% of the alive proxies were
properly working on the first day, after one and two months
only 21.40% and 23.08% of were found to be still working.

6) Inclusion in blacklists: It is commonly believed that
open proxies are not only used for legitimate purposes such as
accessing blocked content and protecting a user’s privacy, but
also for other nefarious or questionable activities. Alonso et
al. [7] examined the use of a proxy they set up, and observed
many cases where their proxy was used for fraud. A question
that arises is whether the public use of proxies results in their
IP address to be blacklisted, and if this affects their availability.

To that end, we examined whether the proxies in our dataset
are included in any online blacklists that contain IP addresses
observed to engage in malicious activities. To accomplish that,
we leveraged dnsbllookup.com, a service that checks if an
IP address exists in 66 DNS-based blackhole lists (DNSBL).
These lists contain IP addresses associated with compromised
or otherwise malicious systems that perform illicit activities,
mainly related to spam distribution. As can be seen in Figure 8,
most of the proxies in our dataset are included in at least
one blacklist, with only 28.46% of them not being found in
any of these lists. When focusing our analysis on the working
proxies, we observe that 18.1% of the legitimate proxies, and
17.59% of the malicious, are not included in any blacklist. We

TABLE IV. AUTONOMOUS SYSTEMS IN WHICH MOST HTTP PROXIES
ARE LOCATED (TOP 10 AUTONOMOUS SYSTEMS).

Autonomous
System Proxies Country Owner

1 AS4837 6,834 CHN China Unicom
2 AS4134 4,887 CHN China Telecom
3 AS13335 2,578 USA CloudFlare
4 AS8048 2,372 VEN Cantv
5 AS17974 1,830 IDN PT Telkom Indonesia
6 AS50896 1,399 RUS MediaServicePlus LLC
7 AS200557 1,399 RUS Petersburg Internet Network
8 AS15169 1,272 USA Google Cloud
9 AS15003 1,076 USA SpeedVM Network Group
10 AS14061 1,043 USA Digital Ocean

TABLE V. AUTONOMOUS SYSTEMS IN WHICH MOST OF THE
MALICIOUS PROXIES ARE LOCATED (TOP 5 AUTONOMOUS SYSTEMS).

Autonomous
System

Malicious
Proxies Country Owner

1 AS4837 433 CHN China Unicom
2 AS17974 234 IDN PT Telekomunikasi Indonesia
3 AS4134 61 CHN China Telecom
4 AS56041 16 CHN China Mobile Communications
5 AS131269 14 IND Beam Telecom

also observe that 32.66% of the non properly working proxies
are not being included in any blacklist, which is significantly
higher than the percentages observed for the legitimate and
malicious proxies (i.e., working proxies in our dataset).

B. Non-Working Proxies

As mentioned earlier, only 38.38% of the alive proxies,
that responded to our probes, succeeded in fetching at least
one of the requested websites. In order to understand the main
reasons behind this high percentage of non-working proxies,
we examined the responses of Selenium and Firefox. In many
cases there was no response or just a blank page. The absence
of a response can possibly means that the particular proxies
were not alive at that time, or that they were under heavy load.
These reasons seem very possible, after considering the low,
in general, reliability of open web proxies.

However 16,336 of the non-working proxies generated
error messages related to their cause of failure. We were
able examine these messages, since many of them were very
similar across different proxies, and group them into generic
categories, which are presented in Table III. We discovered
that most of the proxies (92.63%) were not working due to
network errors they encountered while trying to send/forward
our request. Among many different network errors, the most
common ones in this category were DNS-related errors. In
most cases, proxies had trouble getting an answer from the
DNS server regarding the website we were looking for.

The second category (6.65%) consisted of responses indi-
cating that we were not allowed to use these proxies, such
as “Authentication Required” and “Access Denied.” Typically,
the proxies in this category authenticate their users by their
IP address, and typically such proxy services are not for free.
The “misclassification” category is related to cases where the
specific IP-port pair listed in the proxy list websites does
not actually correspond to an HTTP proxy, but to a different
service (e.g Tor exit nodes). Finally, we have a category
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Fig. 9. Cumulative fraction of the downloaded content size when fetching
the dynamic honeysite h2.

called “Partial downloads” for proxies that started fetching
the requested website, but did not succeed in downloading it,
probably due to network errors.

C. Differences between Benign and Malicious Proxies

1) Location: To get further insights about the proxies we
collected in this study, we used the geolocation service of-
fered by ip-api.com, which provides information regarding the
country an IP address is registered, the ISP and Autonomous
System (AS) it belongs to, and so on. In Table IV we present
the most common Autonomous Systems, in which many of
the proxies we collected belong to. From the 65,871 proxies
we crawled in total, we found 60,708 unique IP addresses. We
identified that 11.25% of the proxies belong to a single AS
in China. Furthermore, as can be seen in Table IV, most of
the proxies in our dataset belong to Autonomous Systems in
China, USA and Russia.

As our main focus is on malicious proxies, we try to
investigate if there is any correlation between the behavior of
proxies and their location. As can be seen in Table V, Chinese
Autonomous Systems dominate our list, specifically containing
50.79% of the malicious proxies we detected. Interestingly,
another big batch of malicious proxies (23.3%) belongs to an
Indonesian Autonomous System.

2) Fetched content size variation: A basic way malicious
proxies differ from legitimate ones is in relation to the size
of the downloaded HTML file. Since new code is typically
injected, one would expect the size of the downloaded content
to always be larger than the original. As mentioned, however,
proxies that only block certain kinds of content, such as track-
ers and ads, which cannot be considered as malicious, may
actually result in size reduction. Another type of proxies that
we observed are proxies that block trackers and ad networks
only to replace them with their own. Therefore, a downloaded
HTML file belonging to these types of proxies does not have
to differ much in size of that of the original page. This effect
would be more evident for rich web pages that already contain
trackers and ads, similar to our own honeysite h2 (in order for
the proxy to be able to remove some content, and thus reduce
the size of the retrieved page)
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Figure 9 shows the distribution of the downloaded content
size when retrieving our most complex honeysite h2, which
has dynamic content due to the inclusion of trackers and fake
ad networks. The expected download size for honeysite h2
ranges around 21KB. It can be seen that both legitimate and
malicious proxies have downloads falling within the expected
size of the page, while also both retrieve fewer content, mostly
due to proxies that block tracking and advertising content.
Approximately half of the malicious proxies have downloads
with bigger size than expected while about 20% of them double
or more the size of the page.

V. MALICIOUS PROXIES

In this section we focus our analysis on the malicious prox-
ies we have detected and thoroughly discuss about the types
of content modification and injection these proxies perform
on users’ relayed traffic. We categorize content modification
incidents according to well-defined malicious behaviors and
we discuss the semantic nature of each injection, for shedding
more light to the mechanics of a malicious proxy’s operation.
The following analysis was not a trivial task as we had
to overcome many practical challenges, such as non-existing
links, obfuscated JavaScript code, etc.

A. Resources Fetched from Third Parties

In order to track the culprits of the identified injections and
gain a better understanding of the behavior of injected content,
we executed the JavaScript code that was injected by malicious
proxies in the websites they fetched, in an automated way,
and monitored the resources fetched from third-party domains.
We ran this experiment locally, in a controlled environment,
and kept track of all the contacted IP addresses and external
domains. In order to accomplish that, we used our own trusted
proxy for logging and forwarding all the traffic generated by
injected/modified content.

In addition, we used a whitelist containing all the domains
we expected to be contacted by our honeysites, thus identifying
which requests were sent due to malicious injected code and
which ones due to the legitimate dynamic functionality. Two
limitation we encountered during this analysis are: (1) some
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TABLE VI. NUMBER OF MALICIOUS PROXIES THAT INJECT CODE FOR
SENDING INFORMATION AND FETCHING RESOURCES FROM SPECIFIC

THIRD PARTY DOMAINS.

Domain Proxies

1 tongji.baidu.com 556
2 cfs.uzone.id 140
3 a01.uadexchange.com 124
4 up.filmkaynagi.com 113
5 a.akamaihd.net 109
6 urlvalidation.com 107
7 i.qkntjs.info 106
8 adnotbad.com 106
9 ratexchange.net 105
10 i.tonginjs.info 105
11 www.onclickcool.com 104
12 agm.abounddinged.com 104
13 yellow-elite.men 103
14 qnp.demisedcolonnaded.com 102
15 intext.nav-links.com 102
16 www.tr553.com 101
17 ruu.outputsteddy.com 101
18 s.lm15d.com 74
19 rtax.criteo.com 72
20 www.donation-tools.org 69

of the domains/resources were no longer available and (2) our
whitelist had the domains of the fake ad networks we used,
which means that requests from proxy-injected content to these
domains would be ignored.

By following this approach, we were able to collect in-
formation regarding all the domains to which the injected
code sends requests, as well as the IP addresses that corre-
spond to these domains. In Table VI we present a list that
contains the Top-20 most contacted domains, as a result of
malicious injected code. In total we observed requests towards
more than 362 different domains. Additionally, we identified
that 181 domains were contacted by five or more malicious
proxies. We identified 98 domains that were contacted only
by a single proxy each, while for the most popular domain
(tongji.baidu.com), requests were sent by content that was
injected from 556 different malicious proxies.

Figure 10 presents the number of unique domains that were
contacted by each malicious proxy, without considering the
domains originally included in our honeysites (i.e., whitelisted
domains). As can be seen in Figure 10, 12.94% of the
malicious proxies do not fetch any third-party resource. In
reality, most of the aforementioned proxies try to fetch external
resources but the third parties hosting these resources are no
longer reachable. Also, we observed a few cases of proxies
that do not attempt to fetch any resource, but try to load them
from the browsers local storage. Furthermore, we observed
that 4.08% of the malicious proxies fetch only one external
resource, and that 57.17% fetch resources from more than
two domains, while 8.56% of the proxies contact more than
20 different domains. Interestingly, the top 12 proxies issue
requests to more than 100 different domains. We discuss about
the purpose of these injected domains in detail in Section V-D.
It is observed that many different proxies contact the same
third-party domains in order to fetch particular libraries that
implement specific malicious or questionable functionalities
(e.g., user fingerprinting).

B. Generic Categorization of Rogue Behavior

Advertisements. Malicious proxies often inject ads in the web-
sites they fetch. We visually inspected a random subset of the
malicious proxies’ downloads for determining what type of ads
they inject. Several ads are displayed in a language compatible
with the proxy’s geographical location, while sometimes ads
can be displayed in a language compatible with the client’s
location. Certain ads exercise a legitimate behavior, without
tricking the user into clicking them. However, some of them
completely cover the target website, while others are much
more aggressive, e.g., embedding videos from YouTube. For
example, Fyne.in covers the whole page and displays video
messages, while several others display fake rewards and alerts
instructing the users to fix their infected computer.

A fraction of the ads embed adult content and services for
meeting people at the client’s geographical area. We randomly
clicked some of the injected ads and found that some of them
redirect to malware distributing sites that have been already
blocked by Google safe browsing.

Tracking. As described in Section III, we recorded all the
requests to third parties with Firefox and Firebug. We observed
that these parties typically set third party cookies to the users’
browser. In some cases, these cookies share the same ID,
which indicates that third parties are cooperating to track the
user through cookie syncing [13]. Also, malicious proxies were
found to inject JavaScript from Mixpanel [21], which are used
to track the actions of the user in the visited websites.

Fingerprinting. Malicious proxies often attempt to maintain
tabs open on the user’s browser for launching fingerprinting
attacks. We identified certain injected content that make re-
quests to third parties such as advedia360.com, which emits
JavaScript in the HTML code of the page that uses fin-
gerprintjs2 [31]. Fingerprintjs2 is a well known library for
identifying web browsers with a high accuracy. In a similar
fashion, proxies that perform canvas fingerprinting [22] were
also detected, like 104.238.146.90:80. This specific proxy
redirects the user to a website that sells skin products, and
claims that the requested website could not be found.

Privacy leakage. Malicious proxies inject scripts, which once
rendered, trigger requests to third-parties for exfiltrating sen-
sitive user information. This information may include static
fields like geolocation data, or may be the outcome of a
fingerprinting methodology. For example, we found many
instances of an injection that emits requests to particular third
parties affiliated with the ad market, specifically to BlueKai
and Eyeota.com, which are a data management platform and
a data supplier.

We also uncovered injection libraries that target sensitive
user information that exists in certain pages the user possibly
visits, as well as JavaScript that harvests e-mails and phone
numbers. In rare cases, we identified scripts that search for
specific DOM elements of popular web pages (like QZone,
a Chinese social network) for extracting personal information,
such as the user’s blood type. Another example is given by the
proxy 186.237.46.32:8080 which embeds a search form from
booking.com and google.com in the fetched website, and then
tracks whatever information the user used them for. Therefore,
we can undoubtedly infer that malicious proxies, and their
injections, are seriously affecting users’ privacy.
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Fig. 11. High-level categorization of observed malicious behaviors.

Malware. Several injected libraries contain JavaScript code
that triggers requests towards sites that are blacklisted and
blocked by Google safe browsing. Upon inspection we found
that malicious proxies often attempt to land malware on the
user’s host or redirect the browser to a drive-by download
page [25].

Unclassified behavior. We had some difficulties in understand-
ing certain injections, in a small fraction of cases. This is
mainly due to obfuscated/minified JavaScript code, and also
because some third party domains were no longer valid during
the analysis phase. This is not unexpected, as very often
the operators of servers that host malicious content change
domains to avoid being detected and blocked. In certain cases,
we identified proxies that inject a script or an iframe
element with no target (i.e., src is empty). This may be due to
a templating framework used, which mistakenly or on purpose
adds this element, while a higher-level script chooses when to
include a payload or not. Also, in some other cases instead
of fetching data, the injected scripts tried to use resources
from the browser’s local storage. Proxies that exhibit such
behaviors are marked as suspicious, but are not considered as
malicious. Any new information about these cases may result
in considering them malicious in the future.

We summarize all the different types of injections per-
formed by malicious proxies in Figure 11. We have grouped
injections according to the high-level semantic goal of the
malicious proxy. If the injections of a proxy belong to multiple
high-level categories, this proxy is counted in all the respective
categories in Figure 11. Also, it is noted, that suspicious
proxies are not counted at all, unless they simultaneously
perform attacks the belong to the aforementioned categories.

As shown in Figure 11, we have discovered 472 malicious
proxies that inject ads in the page served to the user. Some
of these ads are fetched from legitimate ad networks, while
others serve more devious purposes (e.g., redirect to unsafe
sites). We consider that a proxy is tracking user’s information
if it attempts to extract information regarding the device, the
OS or the browser of the user, as well as user’s personal
information (e.g., name, e-mail, address). Such behavior can
be detected by looking for injected JavaScript code that extract
information about the language and timezone of the user, the

user agent, system language, platform, plugins, dimensions
of the screen, device pixel ratio, color depth and others. We
also include cases where the proxies use well known tools
like fingerprintjs. We discovered 392 proxies guilty of
this behavior. We also identified JavaScript code for tracking
keyboard and mouse movements, and for setting and reading
cookies, by 157 and 152 malicious proxies respectively. More-
over, we identified 118 proxies that make requests to sites
that are blocked by Google’s safe browsing, potentially for
installing malware on the user’s machine.

C. Content-dependent Injections

After following the methodology described in Section III
for detecting malicious proxies and documenting their be-
havior, we wanted to investigate if their behavior changes
according to the content of the website they fetch. By com-
paring the domains each proxy repeatedly (i.e., more than
once) requests for each honeysite, we found that 37 proxies
request 63 domains in total for (h2) but not for (h1). This
behavior confirms our hypothesis that some proxies change
their behavior depending on the content they encounter. More
specifically, we detected 10 proxies that injected a domain
inside the iframe of the AdSense ad for (h2) and the real
site (but not in the static honeysite h1). It seems that this
injection tries to insert an ad at the specific place where the
AdSense ad should have normally been. Also, from the 362
domains injected in total in our honeysites, we found 48 that
were not being injected in the real website we used for testing
the proxies. This behavior indicates that some proxies tend to
change their injection according to the content they fetch.

In order to investigate in more detail the behavior of
malicious proxies in regards to the already existing ads, we
used a script to automatically detect whether they attempt to
modify the advertising IDs of any of the fake ads we had in our
dynamic honeysite (h2). We detected two such proxies, which
targeted our advertisement from Media.net, and successfully
changed our fake publisher’s ID with theirs. This modifications
performed 9 and 11 times respectively. The first proxy even
used two different publisher’s IDS, on different occasions.
Interestingly these proxies did not inject anything else on the
particular testing website, or the other two testing websites.

However, surprisingly, they did not always perform the ID
replacement in (h2). The first one injected the Media.net iframe
for nine days in a row and then, the next two days fetched the
page without any modifications. The second malicious proxy
was fetching an unmodified version of the testing website for
18 days, without performing any content modification, and
then suddenly started modifying the ID of the existing ad. This
modification happened for 11 days in a row, and then, for the
remaining period of our experiment, it was acting entirely as a
benign proxy, not performing any modifications. To that end,
we investigated if any other proxies in our dataset act in a
similar way, and we detected that 41 (4.08%) of the malicious
proxies do not always perform injections or modifications, but
only exhibit such a malicious behavior sporadically.

D. Cases of Interesting Injections

As already discussed in the previous, in the majority of
cases, malicious proxies inject JavaScript code that interacts
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with third-parties. It is interesting to explore the distribution
and popularity of the domains used by these third-parties. A list
of the most commonly contacted domains is given in Table VI.

The most contacted third-party domain is owned by
a popular Chinese search engine, namely Baidu. This is
tongji.baidu.com, which is a traffic analysis service similar
to Google analytics. In this case, a div element is injected
in the DOM tree of the fetched website and tries to load
tongji.baidu.com/logstat.swf. The allowscriptaccess tag
is set to always, meaning that the .sfw files are granted
access to the HTML DOM regardless of where they are hosted.
Almost half of the malicious proxies we detected were found to
be in contact with that domain. Furthermore, cfs.uzone.id and
a01.uadexchange.com belong to the same cluster of injections.
In that case a script element is injected at the end of the
website’s DOM tree, for fetching and showing ads.

Many of the domains presented in Table VI are reached
due to a particular piece of JavaScript code that is injected in
the fetched website. We tracked this code and found it used in
injections by 141 different malicious proxies. Some of them
used different variations of the code, resulting in a few different
domains to be requested, but the core remained the same. This
JavaScript code, which can be used as a toolkit, allows the
attacker to set and read cookies, to get information that can
be used for fingerprinting the user (i.e., device, browser), to
deploy ads, and to send AJAX requests among others.

Moreover, an interesting injection loads code from ratex-
change.net, which behave differently depending on the site the
user visits. For example, if the user visits ok.ru (i.e., a russian
social network) it injects ads from cdnpps.us with the attackers’
publisher ID. Alternatively, if it detects that the user is using
the Yahoo search engine it hijacks the URL and redirects to
sugabit.net, which is a site that looks like a search engine, but
in reality, is a browser hijacker.

Another interesting cluster of malicious proxies fetches
JavaScript code from d.chaoliangyun.com. It strips all of the
user’s HTTPS connections and tries to extract information
about the user, as well as possible information the page may
contain like phone numbers or e-mails, by using specifically
crafted regexes. Additionally, it monitors all the sites the user
visits and searches for site specific information that could
reveal very sensitive user information.

VI. DISCUSSION AND LIMITATIONS

This work is an initial attempt to assess the extent of
malicious content modification by rogue HTTP proxies. While
it is possible that some popular proxies are not included in our
proxy set, we consider this as highly unlikely. We believe that
users look for proxies in the same way we do – via Google
search of proxy lists. Thus, in order for a proxy to be popular,
it must be included in proxy lists that are highly ranked in
Google search results.

We opted for a simple but effective scheme that relies on
decoy websites under our control to detect content modification
without false positives. This approach, however, is not robust
against determined rogue proxy operators who may antici-
pate our attempts, and refrain for performing any suspicious
activity. Currently, detecting our testing efforts is relatively

easy, since we use the same set of honeysites hosted on a
single server, making them easily identifiable. A first step
for mitigating this issue is to significantly expand our set of
honeysites, and randomly expose only a few of them to each
proxy. Eventually, a more generic strategy is needed against
sophisticated proxies who may choose to target only a subset
of pages, e.g., only those containing ads from a certain ad
network, high-profile and popular websites, and websites of
certain interests. Consequently, a broad, diverse, and constantly
evolving set of pages should be used as targets, to achieve the
required stealthiness and coverage.

Although we used the proposed methodology as part of a
large-scale measurement effort, the core content modification
logic in conjunction with honeysites, can also be used as
a standalone tool, for on-demand testing of any proxy that
users are about to trust their traffic with. To that end, we
have implemented a web service that follows our methodology
for regularly crawling proxy list websites, detecting content
modification incidents, and generating on a daily basis a
list of proxies that have not been found to perform any
modification or injection. As some rogue proxies may only
perform modifications selectively and sporadically, we keep
this list relatively short, for being able to re-test each proxy
multiple times every day.

VII. CONCLUSION

In this work, we carried out a large-scale analysis of open
HTTP proxies, focusing on the detection of rogue proxies
that engage in malicious or unwanted content modification.
We developed a DOM comparison technique for detecting
HTML alterations from third parties, and during a period of
two months, we made multiple requests to 65,871 proxies,
requesting honeysites under our control. Our findings suggest
that 38.21% of the working proxies modify the page they fetch
in some way, while 5.15% of the proxies we tested performed
some form of malicious content modification. We presented
a detailed analysis of the characteristics of legitimate and
malicious proxies, and identified and analyzed various forms of
malicious injections. Our results indicate the important privacy
implications of trusting user traffic to unknown open proxies,
operated under questionable motives. Among the observed
behaviors, we encountered many privacy compromising inci-
dents, with many proxies collecting and sharing private user
information with third parties, let alone making requests to
pages that deliver malware.
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