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ABSTRACT
Browser fingerprinting continues to proliferate across the web.
Critically, popular fingerprinting libraries have started incorpo-
rating extension-fingerprinting capabilities, thus exacerbating the
privacy loss they can induce. In this paper we propose continuous
fingerprinting, a novel extension fingerprinting technique that cap-
tures a critical dimension of extensions’ functionality that allowed
them to elude all prior behavior-based techniques. Specifically, we
find that ephemeral modifications are prevalent in the extension
ecosystem, effectively rendering such extensions invisible to prior
approaches that are confined to analyzing snapshots that capture a
single moment in time. Accordingly, we develop Chronos, a system
that captures the modifications that occur throughout an exten-
sion’s life cycle, enabling it to fingerprint extensions that make
transient modifications that leave no visible traces at the end of ex-
ecution. Specifically, our system creates behavioral signatures that
capture nodes being added to or removed from the DOM, as well as
changes being made to node attributes. Our extensive experimental
evaluation highlights the inherent limits of prior snapshot-based
approaches, as Chronos is able to identify 11,219 unique extensions,
increasing coverage by 66.9% over the state of the art. Addition-
ally, we find that our system captures a unique modification event
(i.e., mutation) for 94% of the extensions, while also being able to
resolve 97% of the signature collisions across extensions that affect
existing snapshot-based approaches. Our study more accurately
captures the extent of the privacy threat presented by extension
fingerprinting, which warrants more attention by privacy-oriented
browser vendors that, up to this point, have focused on deploying
countermeasures against other browser fingerprinting vectors.

CCS CONCEPTS
• Security and privacy → Browser security.
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1 INTRODUCTION
Modern web browsers offer an expansive collection of features and
capabilities for improving the user experience, while still allow-
ing users to further expand browsers’ functionality or personalize
their experience by installing browser extensions. The prevalence
of extensions is made evident by a report from Google stating that
“nearly half of all Chrome desktop users actively use extensions” [4].
However, this personalization suffers from inherent privacy risks:
(i) the list of installed extensions can augment the browser finger-
print that websites generate for a given device, (ii) the intended func-
tionality of extensions can reveal sensitive or personal data about
the user (e.g., religion, medical issues, and nationality) [22]. In other
words, extension fingerprinting presents an additional form of pri-
vacy loss compared to “traditional” browser fingerprinting vectors.

Nonetheless, while other browser attributes and characteristics
that contribute to browser fingerprints can be trivially obtained
through dedicated JavaScript APIs, no such capability exists for
obtaining the list of installed extensions. Instead, the presence of
a given extension needs to be inferred through implicit techniques.
In fact, in recent years the research community has demonstrated
various techniques for achieving that goal. Early studies relied on
detecting the presence of specific web-accessible resources [42], a
technique which can be rendered ineffective by countermeasures
deployed by certain browsers or proposed by the research com-
munity [41, 48]. A more robust approach relies on inferring the
presence of extensions based on the side-effects of their executed
functionality (i.e., modifying the page’s DOM [22, 46] or altering the
page’s stylistic properties [28]). More importantly, while extension
fingerprinting has mostly been confined to academic studies,1 re-
cent versions of FingerprintJS [24] (the most prevalent browser
fingerprinting library) actually incorporate such capabilities for
fingerprinting extensions based on traces found in the DOM. This
move has pushed extension fingerprinting into the realm of real-
world privacy threats that can affect users at a wide scale.

A core limitation of all prior studies that infer the presence of
an extension by detecting side-effects caused by its execution (i.e.,
DOM changes), is that they ignore their execution life cycle and

1LinkedIn being the one notable exception [36].
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only analyze a single snapshot (i.e., the DOM’s state at a single mo-
ment in time). This has significant implications for a fingerprinting
system’s effectiveness as it will essentially be “blind” against any
extensions that make ephemeral modifications (e.g., injecting and
then removing a script). Additionally, the configuration of when to
take that particular snapshot (e.g., prior work compares the DOM
10-15 seconds after the test page is loaded [22, 46]) as well as en-
vironmental aspects that can affect an extension’s execution (e.g.,
the number of installed extensions, CPU load) can further impact
such snapshot-based approaches.

In this paper we introduce the concept of continuous finger-
printing, a fundamentally different strategy that overcomes the
aforementioned limitations, whereby the fingerprinting system
captures the entire life cycle of extensions’ execution. We imple-
ment this concept into Chronos,2 a novel fingerprinting system that
collects fine-grained information about all the changes that occur
within the DOM, including ephemeral modifications (i.e., short-
lived changes that do not leave permanent evidence behind). This
enables our system to capture previously-undetectable behaviors
that subvert all prior fingerprinting approaches which searched
for behavioral fingerprints within a snapshot confined to a single
moment in time. Since our technique necessitates changing the
type of information used in signatures, we leverage the Mutation
Observer [10] JavaScript interface and generate fine-grained sig-
natures storing the order and the type of each modification as the
extension introduced it. Moreover, by applying a set of optimiza-
tion and compression techniques, our system generates signatures
containing the required fine-grained information effectively.

We conduct a comprehensive experimental evaluation of Chronos,
and demonstrate the effectiveness of continuous fingerprinting in
uncovering “stealthy” extensions that exhibit ephemeral modifi-
cations. We find that such transient modifications are extremely
prevalent, as Chronos is able to fingerprint 11,219 unique extensions,
resulting in a 66.9% improvement over state-of-the-art DOM-based
fingerprinting [22]. Our signatures are optimally constructed since
94% contain at least one unique modification that is adequate to dis-
tinguish them. Moreover, our system is highly accurate and efficient
in a multi-extension environment since it has an average signature
matching accuracy of 98%. At the same time, it can also perform
the most demanding signature matching in less than 1.5 seconds.

Overall, our study demonstrates that prior techniques signifi-
cantly undercount the threat of extension fingerprinting by missing
40% of the extensions detected by our system. Moreover, adop-
tion by popular fingerprinting libraries and services will push
extension-fingerprinting into the mainstream, further exacerbat-
ing the privacy risks demonstrated by the research community.
We hope that our findings attract more attention from privacy-
oriented browser vendors that are deploying defenses against gen-
eral browser-fingerprinting techniques, and incentivize them to
also explore countermeasures against extension fingerprinting.

In summary, we make the following research contributions:
• We propose continuous fingerprinting, a novel fingerprint-
ing concept that overcomes the time-based confines of prior
approaches and captures extensions’ execution life cycles.

2Named after Chronos from Greek mythology, a deity that embodied the concept
of sequential time and was associated with the duration of an individual’s life cycle.

• We develop Chronos, a novel system that implements contin-
uous fingerprinting. We explore multiple aspects of contin-
uous fingerprinting and develop strategies for optimizing its
performance both in terms of storage and generated network
traffic, as well as detection accuracy.

• We experimentally evaluate Chronos and demonstrate that
our approach outperforms the state-of-the-art fingerprinting
technique as it enables the detection of a significant number
of undetected extensions.

2 BACKGROUNDANDTHREATMODEL
Here we provides pertinent background information on extensions
and technical details relating to the techniques that we introduce.

Extension structure. Extensions are comprised of different
components that implement the extension’s functionalities and pro-
grammatic logic. The Manifest file allows developers to specify the
background and content scripts, external pages, and permissions
that enable extensions to achieve their desired functionality.

Background scripts. Typically, the extension’s main logic is imple-
mented in the background script using HTML and JavaScript. These
scripts run as individual processes in the context of the browser and
handle the majority of the functionality that content scripts cannot.
Since they cannot access the page directly, they communicate with
the other components (e.g., content scripts) through the Messaging
API and fetch any resources or data required for their functionality.

Content scripts are the only scripts that are injected into the web-
page and directly run on the page. Extensions use them to interact
with and modify the page, while they communicate with the back-
ground script through browser APIs. These scripts are declared
statically in the manifest under an entry that also defines the set of
domains on which the content script will execute. In general, con-
tent scripts use DOM requests to control the page and can also inject
other custom scripts or event listeners that listen for specific events.

Mutation observer interface. The concept of mutation ob-
servers was initially introduced by browsers in the early 2000s to
allow developers to monitor DOM changes [53]. Even though it
was not widely used initially, the API was later updated into a fine-
grained JavaScript interface that monitors the DOM for alterations
and modifications [10]. Developers can employ it in their web ap-
plications and use specific options that allow them to observe the
DOM modifications that occur on the target elements, especially
when dynamic changes occur due to users interacting with the
page. Listing 1 shows an example of how the mutation observer
can be used on a target DOM node.

The initial API call of observe configures the MutationObserver
to begin receiving and logging notifications through the callback
function when the DOM change is fired on the target element. The
options object defines the type of mutations that are recorded
through the mutation object and it includes:

• subtree. Monitors the entire DOM subtree of the nodes
connected to target.

• childList. Monitors the target node for additions of new
child nodes and removals of existing nodes.

• attributes. Monitors the changes to the value of attributes
on the target node.

2
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function callback(mutationList , observer) {
mutationList.forEach( (mutation) => {
switch(mutation.type) {

case 'childList ':
/* One or more

nodes have been added to and/or removed */
break;

case 'attributes ':
/* An attribute value changed. */

break ;}});}
const target = document.getElementById("myelement");
const observerOptions = {

childList: true ,
attributes: true ,
subtree: false

}
observer = new MutationObserver(callback);
observer.observe(target , observerOptions);

Listing 1: Example of the initialization and usage of a
mutation observer.

There are also other options depending on the expected type of mod-
ification. These include the attributeFilterwhich takes an array
of specific attribute names to be observed, characterData which
monitors the changes to the character data contained in the target
node, and attributeOldValue, characterDataOldValue which
store the previous data and attribute values. These options and
configurations allow developers to customize the observer objects
for detecting and logging all the changes that occur on a specific
target node. As documented by developers [13], the usage of muta-
tion events is highly efficient when expecting element or attribute
changes under a specific time threshold, since this approach does
not introduce the additional overhead that occurs with continuous
DOM querying. Additionally, in certain cases they can even employ
the mutation observer and omit using eventListeners when they
are expecting a specific attribute or value change.

A Mutation Record represents an individual DOM mutation
with specific properties, and inherits the properties from the DOM’s
Node object. Specifically, a Mutation Record stores the type and
target of each node that the mutation affected. For the childList
type, it also stores two separate lists of added and removed nodes
for the defined target. The attributes type has additional en-
tries that store among others the attributeName and oldValue of
the altered attribute. Finally, each record also stores other DOM-
related data including the parent node, first and last child node,
nextSibling and previousSibling nodes and other node meta-
data including the width/height and position.

Motivation. FingerprintJS [24] is one of the most popular
browser fingerprinting libraries that website vendors employ for
multiple purposes, including bot detection and user identification.
The library employs advanced browser fingerprinting APIs, such
as fonts, canvas, and WebGL fingerprinting, to create the device’s
identifiers. In April 2021 the company announced that they incorpo-
rated extension fingerprinting, focusing on ad-blocker extensions
as part of their fingerprinting vector [40]. As they specifically men-
tioned “Our goal is to get as much information from ad blockers as
possible to generate a fingerprint." The library leverages DOM fin-
gerprinting to detect the presence of one or multiple ad-blockers.
For these extensions, they extract unique CSS selector elements
and generate a set of keywords that could exist on the page due to
the extension execution. Consequently, the library creates a new
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Figure 1: High level representation of our systemChronos.

HTML element (i.e., div tag) with the same values of the potentially
blocked CSS selector and injects it into the page. After injection,
it logs whether this element is present or blocked. This approach is
a textbook example of DOM fingerprinting as introduced by prior
research [22, 46], wherein a tracker attempts to fingerprint a user’s
extensions based on the modifications they introduce to the page.

Threat model. We follow the established threat model of prior
research on extension fingerprinting and assume that the user visits
a malicious or privacy-invasive web page that aims to infer which
extensions the user has installed in their browser. Furthermore, we
are interested in extensions that run on all domains and do not
restrict their functionality to a specific set of domains, as these ex-
tensions can potentially be detected by any attacker. The attacker’s
page leverages a mutation observer object that monitors the DOM
tree for all types of modifications that occur during extensions’
life cycles, and generates behavioral signatures for fingerprinting
extensions.

3 SYSTEMDESIGNAND IMPLEMENTATION
In this section we provide details about our system’s design and im-
plementation. Figure 1 shows a high-level overview of our Chronos
system. In the following, we provide more details about its build-
ing blocks, and argue for various design decisions taken while
implementing our continuous fingerprinting mechanisms. We first
present our approach that utilizes a MutationObserver for mon-
itoring the page and capturing the changes that occur. We then
discuss the characteristics of MutationObserver records and high-
light the differences of this approach with the state of the art that
relies on analyzing a snapshot of the page’s DOM. Subsequently, we
detail our methodology for constructing extension fingerprinting
signatures based on the observed modifications.

3.1 Detecting DOM-basedModifications
To detect DOM-based modifications existing approaches [22, 46]
capture a snapshot of the page’s DOM, which contains the modifica-
tions made by extensions, and compare it with a baseline snapshot
taken when visiting the website without any installed extensions
(i.e., the original DOM). Based on the modifications that are present
in the later snapshot, one can detect extensions the are installed.
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This approach has two significant drawbacks that affect its ef-
fectiveness and accuracy in detecting installed extensions and dis-
tinguishing between their modifications. First, it detects that a new
element is added to the page or that an existing one is removed,
but it does not provide information about the existing elements’
modified properties (e.g., height, width, style, and position). The
state-of-the-art framework for DOM-based extension fingerprint-
ing, Carnus [22], compares the document’s outerHTML in the two
snapshots and identifies text keywords that appear or disappear
from the later snapshot, corresponding to the added and removed
DOM elements respectively. However, while this allows it to detect
that, for example, a <div> element was added to the page, it does
not record its properties or whether it was modified multiple times.
While a subset of this information could potentially be retrieved
by repeatedly polling the DOM, such an approach would introduce
considerable overhead while also being unable to capture all of the
asynchronous modifications performed.

Second, the most significant drawback of snapshot-based ap-
proaches is that they can only observe the cumulative result of the
modifications that took place prior to capturing the snapshot. As
such, they miss extensions that alter the page (or the same page
elements) in a similar way, since the snapshot will only include
evidence of the last modifications that “overwrote” previously com-
mitted ones. Moreover, such approaches also miss extensions that
perform ephemeral modifications (i.e., changes that reverse the
effects of previously committed actions). For instance, we have
observed extensions that add an element to the page and soon af-
ter remove it, or extensions that inject a <script> that removes
itself after execution. Existing approaches that take a snapshot at
a specific point in time will fail to detect such extensions, unless a
snapshot happens to be taken at the exact moment in timewhere the
modifications’ side-effects are still present on the page. When con-
sidering the fact that the execution life cycle of different extensions
will vary, and that browsers execute extensions sequentially when
multiple extensions are present, it becomes obvious that approaches
that rely on snapshots suffer from fundamental drawbacks.

To overcome these limitations and generate accurate fingerprint-
ing signatures, we leverage the MutationObserver interface for
continuously monitoring the page and collecting information about
all the alterations that take place. While an approach that relies on
capturing multiple snapshots of the page’s DOM at specific time
intervals (e.g., every few tens of milliseconds) is conceptually sim-
pler, such a DOM-polling approach will impose prohibitively high
overheads on both the page and the detection system. Furthermore,
even with multiple frequent snapshots, there is no way to ensure
that a single modification is captured in each snapshot. This moti-
vates our design and necessitates utilizing the MutationObserver
mechanism for detecting the modifications.

Honeypage. We follow the methodology of prior work [22]
for exercising extensions and making them reveal their presence.
Specifically, we use a website under our control (dubbed as honey-
page) for identifyingwhichmodifications each extension introduces.
To construct the fingerprinting signatures we visit the honeypage
with a browser that has a single extension installed and wait for
the honeypage to complete loading and the extension to run its
functionality, while collecting all the information about modifica-
tions that occur which are recorded by the MutationObserver. For

each extension we visit the honeypage three times so as to identify
extensions that perform different modifications each time, and ex-
tensions’ modifications that include dynamic content that changes
in a predictable way across visits (e.g., including a timestamp).

To ensure a fair comparison of Chronos to the state of the art,
we will use the honeypage and dataset from Carnus [22]. The hon-
eypage contains a variety of textual and visual elements, media
resources, and ad-fetching scripts used for triggering extensions
and revealing their functionality. The only change in the honey-
page used by our system is that we employ a MutationObserver
to detect and record the modifications instead of capturing a single
snapshot of the page’s DOM after a predetermined amount of time.

Extension filtering. For our analysis we focus on extensions
that run on all domains (i.e., they include the <all_urls> entries in
their manifest), since they are activated and executed on any page
without domain restrictions. This selection strategy allows us to ac-
curately quantify the risk that extension fingerprinting poses to all
users, as anywebsite they visit can employ these techniques and fin-
gerprint those extensions. Compared to the state of the art, although
Carnus [22] did not perform such a filtering on their dataset but
exercised all extensions, we consider our results directly compara-
ble to Carnus. This is because Carnus’ honeysites were situated on
custom domain names thereby triggering only the extensions that
are allowed to execute on arbitrary websites (i.e. the extensions that
execute only on specific domains and websites would never be trig-
gered by Carnus, even if the authors chose not to filter their dataset).

3.2 RecordingMutation Information
Abehavioral modification can be either (i) the addition or removal of
DOM elements and (ii) the alteration of existing elements’ attributes.
The included MutationObserver starts checking for changes as
soon as the page is loaded and the JavaScript code starts executing.
It detects changes as they occur, in an asynchronous fashion, and
for each modification it returns a MutationRecord. To monitor
all the behavioral modifications that occur in the DOM tree, we
configure the mutation observer to target the DOM’s root node (i.e.,
document.documentElement and document.body) and capture all
the childList and attribute mutation types.

Since we are interested in the entire DOM, by monitoring these
two mutation types we are able to capture fine-grained informa-
tion about extension-originating modifications, without the need
to monitor and capture mutation types and properties such as
characterData and subTree. Even though this information is
available to the mutation observer, we found that the knowledge
about the addition/removal of nodes and attribute changes is suffi-
cient for detecting extensions, and that we do not need to further col-
lect information about the DOM structure and the nodes’ hierarchy.

In general, the mutationRecords returned by the mutation ob-
server contain a plethora of information, and a large number of
entries, relating to each observed modification. The majority of
this information, however, consists of properties shared among
multiple mutations’ nodes and thus not helpful for uniquely char-
acterizing a mutation. We do not include those entries since they
provide supplementary information to the childList and attribute
types that we already leverage. In practice, we verified that if a
mutation event is present, it either belongs to the childList or
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attributes type mutation record. The mutation object’s additional
entries store redundant information and structural related data that
do not enhance our signature extraction.

To that end, we parse the mutationRecords and consider only
a few specific entries when constructing the fingerprinting signa-
tures. In the case of mutations of the attributes type, we store the
target node identifier and its outerHTML attribute (which includes
the altered values) and ignore the attributes’ individual entries that
can also be found in the mutationRecord.

3.3 Fingerprint Generation
In the remainder of this section we describe our methodology for
constructing the extensions’ fingerprinting signatures and extract-
ing the user’s fingerprint when visiting the attacker’s website.

To construct the fingerprinting signatures, we visit our honey-
page with a browser that has one extension installed at a time,
and the mutationObserver in the honeypage records information
about the mutations that take place. We then parse the obtained
mutationRecords and identify specific entries, based on each mu-
tation’s type, that we use to form our fingerprinting signature. A
similar process is followed when a user visits the attacker’s website
(i.e., our honeypage in this instance). The mutationObserver in
the page collects information about the modifications introduced
by the installed extensions, which we process similarly to the sig-
nature generation and use as the user’s fingerprint. Finally, in order
to determine which extensions the user has installed, we compare
and try to match the extensions’ signatures from our database with
the user’s collected fingerprint.

Dynamicmodifications. During the signature generation pro-
cess we visit the honeypage three times for each extension, to iden-
tify those that perform (i) different modifications in each visit and
(ii) modifications that include dynamic content. After an initial anal-
ysis of the obtained mutationRecords we identified four classes of
dynamic behaviors that alter one or multiple elements in a mutation.
Such mutations need to be identified and handled with caution, as
their dynamic parts can result in the extensions’ signatures not
matching the user’s fingerprint. The four classes of dynamic behav-
iors that we identified are: (i) jQuery injected elements, (ii) extension
WAR URLs, (iii) URL query parameters, and (iv) timestamps.

For the first class, we observe that the jQuery library uses an
internal library called Sizzle to perform CSS queries and modifi-
cations [32]. When the library is called, it injects a <div> element
into the DOM, which has a name of the form sizzle-ID, where
the ID is a unique numeric string reflecting the type of the se-
lection. When the library finishes its querying process, it then
removes the element from the DOM. This identifier is dynamic
and changes every time that the extension runs. To handle this
case of dynamic <div> elements we replace the identifier in the
element’s name with a value representing its size. For example the
name sizzle-1649704082959 is transformed to sizzle-13. This
approach allows us to remove the dynamic parts of a signature ef-
fectively without altering the mutation’s static or immutable parts.

We follow a similar approach for handling the case of WAR
URLs that are included in the mutations. Since an extension’s UUID
changes when multiple extensions are installed in the browser, we
replace the UUIDwith the keyword IDwhen storing themutation in

the signature, without actually altering the path that the extension
requests (i.e., chrome-extensions<ID>/<path>/<resources>).
With regards to requested resources’ URLs that are found in the
DOM modifications, we observed that if an extension requests a
resource from an external URL, either the URL or the query param-
eters might change across runs. This may be part of their intended
behavior, or it might be affected by the state of the DOM (e.g., if
an element is present, the extension fetches a different resource). If
we observe that a URL is stable but its parameters vary, we replace
these parameters with the keyword ID. For example, in the case of
https://s3.amazon.com/content.js?rand=1234, we will store
the URL https://s3.amazon.com/content.js?rand=ID in the
signature. On the other hand, if the resources are dynamic and their
URLs change in an unpredictable way, we replace the resources
name with the keyword Resource without altering their paths. Fi-
nally, we apply the same approach for handling the case of dynamic
timestamps and dates. Specifically, we omit the dynamic values and
only store the mutation’s static part in the fingerprinting signature.

We followed a continuous testing approach for developing this
strategy, by verifying that all dynamic values are detected and han-
dled accordingly. As our evaluation shows (§4), it is uncommon
for extensions to introduce additional dynamic elements that alter
signatures’ structure and content and, thus, our heuristics are com-
prehensive. This process is straightforward and easily applicable,
while also effectively handling the dynamic behavior of finger-
printable extensions. Chronos follows the same approach when
replacing the dynamic values in the signature-generation phase
and during the extraction of users’ fingerprints.

Attributetypes. The attributes type ofmutation record stores
the outerHTML of a style or element modification that was trig-
gered by the extension. Depending on its target, this entry (i.e.,
body or page’s element) either stores a specific modification or ex-
tracts the whole HTML object of the page. For this type we compare
the outerHTML with the original page’s DOM (i.e., when an exten-
sion is not installed) and we extract the specific attribute changes.
This filtering optimizes the content of the mutation record since it
only stores the required information and enhances the fine-grained
fingerprint extraction process.

Fingerprint collection. Since mutation records are triggered
asynchronously, we wait until all the mutation events fire before
storing them in a JSON object. The key in the JSON object is the mu-
tation record’s identifier, which stores the order in which each event
was fired. Each key’s entries are a serialized nested object that stores
the required information for each mutation type. For optimization
purposes and reducing the network overhead, we also compress the
JSON object before sending it back to the server for further analysis.
For compression we use JavaScript’s popular Pako [33] library.

Another crucial dimension for our system functionality per-
tains to when we collect the signature trace. Previous work [22, 46]
reported using a hard threshold of 10-15 seconds, which was empir-
ically measured as sufficient time for an extension to reveal itself.
Since Chronos continuously collects DOM modifications that are
triggered while being performed, we can pinpoint a more accurate
threshold. After extensive experimentation we found that eight sec-
onds are adequate for extensions to load and perform their intended
functionality even when multiple extensions are present. Out of all
the evaluated extensions, only 0.05% performed modifications after

5

2679



CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Konstantinos Solomos, Panagiotis Ilia, Nick Nikiforakis & Jason Polakis

Time (t)

t0

var script = createElement('script’);
script.src = “foo.js”
document.appendChild(script);

Extension Execution Cycle

Script injection on page Script removal after execution

t1 t2 t3

…. ….

{type: childList, target: body,
added: []
removed: [{

id: 0,
outerHTML: <script src=foo.js></script>}]             

} 

Carnus Snapshot 
Capture

ts

Mutation_1 Mutation_2

Chronos : 
{ 

1 : {...,added:{foo.js}}
2 : {...,removed:{foo.js}}

}

Carnus : {}

Chronos Captured Mutations Fingerprinting Signatures

script.onload = function() {
this.remove();

};

{type: childList, target: body,
added: [{

id: 0,
outerHTML: <script src=foo.js></script>}]
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}

Figure 2: Extension execution timeline and continuous fingerprint generation.

the eight-second mark. Those are uncommon extensions that mod-
ify the DOM and interact with dynamic elements (e.g., animations,
live data illustration) while active on the page. However, due to their
continuousmodification of the DOMwe are still able to collect a rep-
resentative set of mutations in under eight seconds. For the remain-
der of the paper we will use this threshold, unless stated otherwise.

Continuous fingerprinting timeline. To further detail the
continuous fingerprint process, we illustrate the fingerprint genera-
tion timeline in Figure 2. In this scenario, an extension performs an
ephemeral modification by injecting a script (foo.js), and remov-
ing it after its execution. At time t0 the extension’s content-script
is running on the page and injects a script tag including the ex-
ternal script. This addition triggers the mutation observer since it
detects the added script element on the page. At a later time t2 the
injected script removes itself since it finished its functionality, and
the mutation observer is triggered again due to the removal of the
previously added script. If we were following the traditional DOM
fingerprinting snapshots like Carnus, we would not have taken a
DOM snapshot during this time. Even if we were instructing Carnus
to take a snapshot every few milliseconds (with all the noise and
overhead that this entails), there would be no guarantee that our
snapshots would have interleaved these addition/removal actions
in a way that would have uncovered the ephemeral script. When
Carnus takes its snapshot at a later time the extension has already
finished its intended functionality and its fingerprint is empty, as if
the extension had no visible side-effects on the DOM. On the other
hand, Chronos’ fingerprint includes one addition and one removal.
This example illustrates the power of continuous fingerprinting
compared to prior snapshot-based approaches in effectively uncov-
ering extensions with ephemeral modifications.

3.4 Fingerprint Matching
Conceptually, detecting a single extension that is present in a user’s
browser is straightforward when leveraging the signatures gener-
ated by Chronos. In practice, users may have multiple extensions
installed and several may be triggered on a given page. As such,
we need to follow a different process for effectively fingerprinting

multiple extensions. When a user visits the honeypage, we extract
the fingerprint trace that we have to match with multiple entries
accordingly. For this task, we design a matching algorithm that
distinguishes the fingerprints of a larger fingerprint trace. A high
level overview of our proposed algorithm is given in Algorithm 1.

Before applying any detection technique, we perform a set of
preliminary processing and filtering. Our algorithm’s input includes
only the fingerprint trace and the set of all fingerprinted extensions.
The first step is to select the subset of extensions with signature
sizes smaller than the fingerprint trace’s. This filtering is essential
since the fingerprint trace’s maximum size is the accumulated size
of the target signatures while it also reduces the number of unnec-
essary comparisons by removing extensions with larger signatures,
as they cannot be part of the fingerprint. Another characteristic
of the signatures is that they can share identical mutation records,
and thus, smaller signatures can form perfect subsets of larger ones.
To avoid this type of mismatch when comparing signatures, we
also sort the set of signatures in descending order based on their
size. Moreover, signatures can have additional unique mutation
records that are sufficient to detect the presence of each extension.
We divide our target signature set into two smaller subsets to op-
timize our search process. The first one includes extensions with
unique mutations, and the second one stores signatures formed by
extensions with non-unique mutations. After applying this final
filtering, we handle each subset of extensions individually.

In the first iteration (lines 2-8), we attempt to detect the signa-
tures formed by unique mutations. For each signature, we compute
the common set between its unique records and the mutations of
the fingerprint trace. We successfully detect the extension if at least
one mutation record matches the signature and the fingerprint trace.
We then remove all of the signature’s mutation records from the
fingerprint trace, and we also store the extension’s ID. We proceed
with this process until the fingerprint trace is empty or until there
are no other signatures left for comparison.

We follow a similar approach for the second part of our algo-
rithm (lines 12-17). Since the search space is the set of signatures
that do not have unique mutations, and thus we are not able to
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Algorithm 1: Fingerprint matching process for detecting
multiple extensions
Input: Fingerprint Trace, Fingerprint DB.
Output: List of detected extension IDs

1 ID_Vector =[]
2 signatures_set =Fingerprint DB {length ≤ size(fp_trace)}
3 unique_signatures = sorted{signatures_set{unique}}
4 non-unique_signatures = sorted{signatures_set{non-unique}}
5 foreach signature in unique_signatures do
6 common= {signature.unique_records ∪ fp_trace}
7 if common then
8 fp_trace.remove(signature.mutations)
9 ID_Vector.insert(signature.ID)

10 end
11 end
12 foreach signature in non-unique_signatures do
13 found = Boyer-Moore {signature.mutations, fp_trace }
14 if found==True then
15 fp_trace.remove(signature.mutations)
16 ID_Vector.insert(signature.ID)
17 end
18 end
19 return ID_Vector

distinguish them by just retrieving the shared mutations, we apply
a different matching algorithm. Specifically, we build off of the
Boyer-Moore string search algorithm [47]. The main idea behind
this algorithm is the following: at first, it processes the target string
and creates indexes to store the position of each character. Then
it compares each pattern’s character (starting from the end) to find
a word or the same characters in the target string. When there is
a mismatch, the search slides to the next matching position in the
pattern using the precomputed index value. In our case the target
string is the fingerprint trace, while the pattern is the signature
we are looking for. We iterate through the set of signatures with
common mutations, and for each signature we apply the algorithm
until there is a match. For the matching signatures we remove their
mutations from the fingerprint trace and store them accordingly.
As we show in Section 4, this algorithm is efficient and effective at
matching and detecting fingerprints.

In general, the aforementioned matching process that leverages
both the “direct” and Boyer-Moore algorithms is effective in distin-
guishing unique signatures. While the Boyer-Moore algorithm can
also be used in a standalone fashion with similar accuracy, our pro-
posed solution that combines them both remains highly accurate
while reducing overhead, as we show in our evaluation.

4 EXPERIMENTAL EVALUATION
In this section we experimentally evaluate Chronos’ extension fin-
gerprinting capabilities. For our analysis we use two datasets:

• 𝐸𝑥𝑡1: This dataset contains the extensions used byCarnus [22];
it was collected in March 2018 and it contains 102,482 exten-
sions. After applying the domain filtering rules and omitting

Table 1: Number of extensions detected in each dataset.

Dataset Extensions Fingerprintable (%)

𝐸𝑥𝑡1 27,342 8,385 (30.66%)
𝐸𝑥𝑡2 11,140 3,865 (34.69%)
Total (all extension versions) 12,251
Total (unique extensions) 11,219

the extensions that do not run on every domain, we are left
with 27,342 extensions.

• 𝐸𝑥𝑡2: To perform a fine-grained analysis of extension behav-
ior across time, we collected a fresh snapshot of the Chrome
Webstore in December 2021. To avoid any bias from the
same extensions being in two different datasets, we omit
any extensions already present in 𝐸𝑥𝑡1 and only collect new
versions of those extensions as well as new extensions. This
dataset contains 11,140 extensions, with 3,144 being new
versions of extensions from 𝐸𝑥𝑡1.

Experimental setup. We first deploy our honeysite in a pop-
ular, widely-used web hosting service to perform our experiments.
We leverage Selenium [39] for orchestrating and controlling the
browsers that act as desktop users that visit the honeysite with a
specific extension installed. To increase the efficiency of our exper-
iments, we build our framework into a Docker Container [9], that
allows us to run multiple browsers with different sets of installed
extensions in parallel. For all the experiments, we use an off-the-
shelf desktop machine with a 6-core Intel Core i7-8700, 32GB of
RAM, connected to our university’s network. To reduce potential
extension failures due to mismatched browser environments, for
each dataset, we used the latest version of Google Chrome as well
as one that was contemporary to the time period of each dataset [7]
(i.e., versions: 73.0.3683.68 and 96.0.4664).

Overview. In Table 1 we present a summary of the detected
extensions in our datasets. For the first and oldest dataset, we are
able to uniquely fingerprint ≈31% of the extensions. Similarly, the
percentage for the most recent dataset is ≈35%. In general, our
average detection percentage is strictly better than any prior DOM-
fingerprinting mechanism, while also providing a lower bound
of the fingerprintability of the extension ecosystem. These detec-
tions reflect the inherent behavior of extensions interacting and
modifying the DOM. However, extensions are complex and multi-
dimensional components that provide various capabilities that may
not always result in DOM modifications (e.g., they may employ
the browsers’ popup windows), which results in them not being
fingerprintable by any DOM-based detection system. Moreover,
extensions may also expect different input values, such as specific
content in the honeypage, or user interactions [44], in order to
trigger their DOM-modification logic.

Comparisontopriorwork. To gain insights regarding the effec-
tiveness of our approach that relies on continuously fingerprinting
browser extensions, we compare our findings with the state-of-the-
art DOM-based extension fingerprinting system, Carnus [22]. In
general, we differentiate the extensions that generate a non-unique
signature and the extensions that have unique signature finger-
prints and can be directly detected by our system. For the remainder
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Table 2: Detected extensions and signature collisions of Carnus [22] and Chronos.

Carnus Chronos Fingerprintable Extensions
Resolved CollisionsDataset Detections Collisions Detections Collisions (Carnus)* Carnus Chronos

𝐸𝑥𝑡1 6,965 1,521 (21.84%) 11,036 2,651 (24.02%) 1,481 5,444 8,385
𝐸𝑥𝑡2 2,184 287 (13.14%) 4,369 504 (11.54%) 204 1,897 3,865

*Collisions between Carnus’ signatures that are resolved with Chronos’ signatures.

of our analysis, we refer to the extracted signatures as detections
and the unique signatures as fingerprintable extensions.

For a fair and straightforward comparison with our system, we
run Carnus on both datasets. Since Carnus incorporates additional
detection mechanisms (e.g., WAR, intra/inter communication) we
only report the DOM-based behavioral detections. A breakdown
of the results is provided in Table 2 with Carnus detecting 6,965
extensions in the 𝐸𝑥𝑡1 dataset and 2,184 in the 𝐸𝑥𝑡2 dataset. How-
ever, these detections are not unique due to signature collisions, i.e.,
signatures with the same functionality modifying the same DOM
elements and, thus, we omit those collisions from the resulting
fingerprint signatures. We find that 5,444 extensions are uniquely
fingerprintable in the 𝐸𝑥𝑡1 dataset and 1,897 in the 𝐸𝑥𝑡2 dataset.
The number we report for the oldest dataset is different than the
number reported in [22] since the authors followed an approach
that allowed mismatches for fingerprints of large size, which in-
cluded 349 additional extensions with colliding signatures in their
final set of fingerprintable extensions. Following the same principle,
we apply our collision approach so as to directly compare the num-
ber of unique fingerprintable extensions. As we detail later, since
our signatures are fine-grained and contain different information
when compared to traditional DOM signatures, we do not include
colliding signatures in the unique fingerprintable set of extensions.

Regarding Chronos’ capabilities, we find that out of the 11,036 de-
tections of 𝐸𝑥𝑡1, the 8,385 are uniquely fingerprintable, while from
the 4,369 detections of 𝐸𝑥𝑡2, 3,865 are also uniquely fingerprint-
able. As expected, our system fingerprints all of the extensions that
Carnus can fingerprint in both datasets. When comparing directly
to Carnus and its original dataset, we are able to fingerprint 2,941
additional extensions that Carnus misses due to the snapshot-based
observation of the DOM. Similarly, 1,968 extensions (50%) from
𝐸𝑥𝑡2 can only be fingerprinted by Chronos, due to its ability to
capture all modifications that occur within the DOM, even if those
modifications are ephemeral and their traces are erased by subse-
quent modifications. In total, we are able to uniquely fingerprint
4,546 extensions in 𝐸𝑥𝑡1 and 𝐸𝑥𝑡2 that the state-of-the-art approach
would miss. In general, we verify the efficacy of our continuous
fingerprinting approach since we detect ephemeral behaviors of
extensions (e.g., an injection and removal of a script or short-lived
modifications) that are not detectable by the previous approaches.

Ephemeral modifications. To better understand the behavior
of the extensions that can only be fingerprinted by our system,
we further analyze their signatures. We find that all the 4,546 ex-
tensions include at least one addition and one removal of a page
element. This specific behavior is not something one might expect
from extensions; instead one would expect extensions to simply
perform a consistent or immutable set of modifications on the page.

This expectation is what drove prior fingerprinting strategies. How-
ever, based on our analysis, we find that this behavior is common
for extensions that require information about the DOM’s state or
the browser’s state. We discovered that extensions often inject an
element, which could be a simple div tag, or a standalone script
in order to access those properties. In fact, we find that the ma-
jority of the extensions (≈85%) inject a div tag which is required
for the functionality of the jQuery library. Specifically, when the
extension is present, the library injects a sizzle identifier, which
is the internal component that allows the library to activate its
CSS selectors and perform queries on the DOM [32, 34]. Once the
querying is finished, the library removes the tag element and any
other modification and may proceed with additional functionality.
This behavior is consistent across different jQuery library versions
that employ this type of environment-testing mechanisms.

Our analysis reveals similar behaviors for the remaining exten-
sions (≈15%). Extensions tend to inject a script directly in the page or
under an iframe that accesses the browser’s values and variables. In
the simplest scenario an extension injects a script that verifies that
JavaScript is enabled. We also found cases of extensions reading the
local storage and looking for a specific type of stored variables (e.g.,
whether the page contains a type of resource). When they find the
required queried elements, they send a message to the extension’s
components (e.g., background script) and remove the injected script.
This behavior is exemplified by the popular “Adobe Reader” exten-
sion (over 10M users), as it injects a script for identifying whether a
PDF document is present in the browser. Moreover, similar behav-
iors include script injections for detecting if another ad-blocking ex-
tension is present. Specifically the “SpeedTest” extension, with over
2M users, injects a script that queries the DOM for the existence of
an ad blocker since this information is required for its intended func-
tionality. The aforementioned diversity of extension behaviors was
only uncovered due to our continuous fingerprinting methodology,
and was overlooked by traditional DOM-fingerprinting systems.
Our approach is uniquely suitable for detecting such unpredictable
behaviors and generating the appropriate signatures containing all
of the ephemeral modifications.

4.1 Signature Stability, Size & Characteristics
Signature collisions. Next we analyze the identical signatures that
Chronos detected and compare our results to Carnus. In Carnus-
style snapshots, multiple extensions may generate the same signa-
ture due to similar behaviors. By leveraging mutation observers, we
are able to resolve most collisions as our signatures are formed by
continuous modifications and contain comprehensive fine-grained
execution information. Specifically, using our technique our system
resolves ≈97% and ≈71% of the collisions that affect Carnus in each
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dataset, respectively. This highlights that the signatures generated
usingmutation records overcome the limitations of traditional DOM
signatures. Nonetheless, in our approach, there are also extensions
with identical behaviors that generate the same signature. We note
that our dynamic identifier-replacement heuristics can result in
collisions, but they are necessary for enabling Chronos to uniquely
fingerprint extensions, since 5,050 fingerprints contain at least one
mutation record with dynamic content which we would miss if
we did not apply the dynamic heuristics. Regarding the collisions,
out of 2,651 in 𝐸𝑥𝑡1, 89% exist due to shared jQuery libraries. Also,
6% of the collisions are generated from extensions that perform
identical functionality and are published under different identifiers
by the same developer (e.g.,“One-Click Summarizer” and “One Click
Reader”). For the remaining ≈5% of the extensions, we observe
that the collision occurs due to extensions offering similar func-
tionality and employing the same JavaScript interfaces and public
libraries (e.g., for VoIP and Remote Control functionality).For the
𝐸𝑥𝑡2 dataset, the distribution is similar, with 90% of the collisions
generated by the jQuery library, ≈6.5% and ≈3.5% due to the same
developer and functionality respectively.

Signature stability. To understand the stability of Chronos-
derived signatures between different runs of the same extension,
we calculate the number of mutations contained in each of the
three fingerprints generated for each extension (i.e., from the three
executions of each extension). Interestingly, we find that 99.5% of
the signatures have the same number of mutations across runs. The
remaining 0.5% represents highly dynamic extensions whosemodifi-
cations are not deterministic and, thus, the fingerprint’s size varies.

Apart from the size, signatures can also be volatile since mu-
tation signatures can have a dynamic mutation or dynamic parts
in a mutation record, as described in §3.3. Even if a signature has
identical records across runs, parts of the signature might differ due
to this dynamic behavior. Also, different signatures may share the
same mutations due to common libraries. To quantify how these be-
haviors affect the fingerprinting process, we measure the number of
signatures with at least one unique mutation. We find that from the
total 11,219 unique extensions that Chronos detects across datasets,
10,555 (94%) have at least one unique mutation record. Since a mu-
tation record stores the outerHTML of each modification, it has the
potential of being unique. Even if the actions of adding/removing
nodes are common across extensions, the type and the content
of the modification itself can be unique based on the extension’s
purpose and functionality. As we discuss later in this section, this
characteristic has significant implications, as our system is able
to distinguish an extension’s signature by just identifying a single
unique mutation.

Signature statistics. In Figure 3 we present statistics regarding
the signatures’ sizes and structure. Figure 3a depicts the number of
mutation records per signature. We find that 50% of the signatures
contain less than 10 records, while only 5% of the signatures contain
at least 50 mutation records, with the larger signatures storing up to
1,000 records. This trend captures the overall extension ecosystem’s
behavior, where the majority of the extensions perform a specific
set of deterministic modifications. In contrast, only a few extensions
have highly dynamic and elaborate behavior that triggers multiple

mutation events. For instance, the popular weather forecast exten-
sion “Forecast Fox” modifies the DOM to create numerous elements
with a graphical UI and real-time information.

In Figure 3b we compare the original size of the mutation ob-
server’s object (i.e., the total number of entries included in the
object), the filtered signature entries that Chronos uses (i.e., outer-
HTML and target entries), and the compressed (and filtered) sig-
nature size that is sent by the client’s device back to the server
for storage. Here we present the original mutation observer’s ob-
ject size only for completeness; in practice we never collect this
object since the website directly applies our filtering strategy dur-
ing the fingerprint’s generation. As can be seen, our strategy of
selecting only the mutation that holds crucial information is highly
efficient since the final signature’s size is 99.5% smaller than the
original object. This confirms that our signature-generation strat-
egy is efficient while still retaining precise information regarding
the modifications that occur over time, which would be missed if
we followed a snapshot-based approach.

Moreover, for the filtered signatures that form our datasets, we
find that more than half require less than 1.5 KB of storage while
less than 3% require 100 KB or more. Similar to Figure 3a, the exten-
sions that perform multiple dynamic non-deterministic modifica-
tions are those that are more demanding in terms of storage. Since
we compress signatures in our experimental setup, we observe an
additional ≈75% size reduction for half of the extensions. These
numbers indicate that our signature generation and collection is
highly efficient since less than 75 KB of compressed data is trans-
ferred over the web during signature collection. Considering that
users may be using smartphones and connecting over limited data
plans, a naive approach of collecting and transferring all mutation
observer records as they occur would have been prohibitive.

4.2 Longitudinal Analysis & Categorization
Extension types & popularity. We classify the fingerprintable
extensions based on their type, as provided by the Chrome extension
store. The most prevalent category is that of “Productivity” with
≈35% of𝐸𝑥𝑡1 and≈45% of𝐸𝑥𝑡2 belonging to this category.Moreover,
we also compute the relative popularity of the detected extensions,
based on the number of downloads on Chrome’s Webstore. Almost
half of the extensions fingerprinted in both datasets have more than
100 users, while≈10% of the extensions havemore than 10,000 users.

Longitudinal analysis. As we mentioned earlier, 𝐸𝑥𝑡2 contains
3,144 extensions that are newer versions of extensions from 𝐸𝑥𝑡1.
Out of those, 1,032 (32.8%) remain detectable across datasets (i.e.,
they were fingerprintable in the older dataset and remained finger-
printable in the new one). This indicates that certain extensions
remain fingerprintable over time (≈4 years) even if they change their
intended functionality or aspects of their behavior. We also find
that from the initially fingerprintable extensions, 144 (12.2%) stop
being fingerprintable. While not as prevalent, this also reflects how
the extension ecosystem can evolve, since certain extensions may
significantly change their functionality over time or offer the same
features using different browser mechanisms (e.g., browser-popup
windows).While this is an interesting trend, we have nomeans of as-
sessing whether developers made these changes for the express pur-
pose of making their extensions non-fingerprintable. Finally, 12.5%
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Figure 3: Number ofmutation records per signature and signature size for the total number of detected extensions.

of the extensions that were not fingerprintable in the older dataset
are indeed fingerprintable in the new dataset. In general, this exper-
iment highlights that whenever an extension is updated, where de-
velopers might perform multiple modifications to the code and the
functionality, fingerprinting systems should repeat their analysis.

To further quantify these behaviors and better understand the
underlying trends, we compute the signature sizes of the two fin-
gerprints for the 1,032 extensions that are fingerprintable across
versions. We find that 697 extensions (67.5%) did not alter their be-
havior and their fingerprinting signature was identical. Moreover,
for 127 extensions (12.7%), the most recent signature is shorter and
stores fewer mutation records, while the size is greater for 20% of
the signatures. We also explore if the updates alter the signature’s
uniqueness and compute the number of extensions that include
at least one unique mutation record. In the older dataset, 1,014
extensions (≈98.2%) of the common fingerprintable extensions con-
tain unique mutations, while in the most recent dataset that drops
to 97.33%. Despite this slight decline, the rate is relatively stable
over time. We conclude that, apart from the expected shift in the
signatures due to updates, this trend also reflects that JavaScript
libraries and APIs are constantly updated. Accordingly, developers
adapt to these new changes by altering the extension’s behavioral
signatures, which Chronos is still able to detect.

4.3 Multi-Extension Fingerprinting
Here we evaluate Chronos’ capabilities under a realistic deployment
scenario, where multiple extensions are simultaneously installed in
a user’s browser. First, we perform a set of preliminary experiments
to understand the behavior of extensions when they run in a multi-
extension environment, and then perform a large-scale experiment
to quantify our system’s accuracy in a multi-extension setup.

Execution timeline. At first, we investigate howmultiple exten-
sions interact with each other, the resulting order of their execution,
and how signatures are affected. The exact execution order is not
a significant factor in our system since we are mainly interested
in extracting the extension’s fingerprint and identifying potential

changes due to co-interference (i.e., one extension’s changes affect-
ing or prohibiting another extension’s actions). For this experiment,
we randomly choose extensions and form different subsets contain-
ing up to ten extensions. For each set, we install the extensions,
visit the honeysite and collect the fingerprint traces. To generate
an adequate number of measurements, we run this experiment 100
times for each independent set. We observe that the execution order
is always identical (i.e., extension A runs before extension B), and
the execution is deterministic. This is in line with prior observations
by Picazo-Sanchez et al. [35] who reported that browsers execute
extensions sequentially and that the execution order is based on the
installation date of each extension (i.e., the extension installed first
is executed first). However, we find that currently the execution
order is based on the alphanumeric order of extensions’ UUID (e.g.,
the extension with UUID “abc” will run before the extension with
UUID “xyz”), which could potentially be attributed to a change in
Chrome’s handling of extensions. The finding that extensions’ exe-
cution is sequential is crucial for our analysis, as it results in exten-
sions’ signatures that contain the same number of mutation records.

We also observe that execution interruption between extensions
is not frequent, and it only occurs when extensions are requesting
and fetching external resources. In practice, this type of execution
“interleaving” occurs when extension A starts its life cycle and then
requests an external resource; during this idle time the browser
will start the execution of the following extension. This scenario
creates inconsistencies whenmultiple highly-dynamic and network-
related events of different extensions run in parallel and introduce
overhead over the browser. However, as we already reported in §4.1,
the majority of signatures are relatively short and stable, and thus
even if interleaving occurs it does not alter the signatures’ trace.

Identical modifications. Another experimental aspect that is
crucial for matching fingerprints is whether different extensions
trigger identical modifications in parallel. In this scenario, multiple
extensions will attempt to alter the same page element or resource,
resulting in a form of “race condition”. This interference may affect
the value stored in the mutation record as there are three potential

10

2684



Escaping the Confines of Time: Continuous Browser Extension Fingerprinting Through Ephemeral Modifications CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

Table 3: Chronos’ accuracy inmulti-extension settings.

2 3 4 5 6 7 8 9 10

TP (%) 98.33 97.4 96.7 98.21 96.5 98.32 95.84 97.48 98.25
FN (%) 1.67 2.6 3.3 1.79 3.5 1.68 4.16 2.52 1.75
F1 (%) 99.16 98.68 98.32 99.10 98.22 99.15 97.88 98.72 99.12

outcomes: (i) the last extension will perform the same type of modi-
fication and “overwrite” the previous modification, (ii) the extension
will not perform anymodification, or (iii) the extension will perform
a different and non-fingerprinted modification according to its func-
tionality. In the case where nomodification or different modification
occurs, the childList type mutation records will be affected since
they store the information of added and removed nodes, and thus
potential mismatches will be created. However, this behavior will
not affect the attribute type of mutations since we hold the infor-
mation of each attribute change individually, per mutation record.
If an attribute modification is not present or additional attributes
have changed, we can still identify the mutation record uniquely.

In order to handle these mismatches in the attribute types, and
to further quantify this behavior, we run an experiment with ex-
tensions that include at least one attribute mutation record and
capture how the mutation record is altered due to co-interference.
Similar to the previous setup we install sets of up to ten extensions,
selecting random and different extensions every time, and run each
combination 500 times. We find that even when co-interference
alters the content of the mutation records, the attribute mutation
record remains at least 80% identical to the original signature’s mu-
tation record. This result implies that even if the extension does not
perform one of the attribute modifications since another extension
has already completed it, the rest of the attribute modifications will
occur normally. We use this threshold for the rest of our analysis
when we refer to the matching algorithm process

Multi-extension fingerprint. Using the aforementioned in-
sights, we setup a large-scale experiment for evaluating Chronos’
accuracy and efficacy in detecting multiple extensions present in
the same browser. We randomly select N fingerprintable exten-
sions (sets of 2 up to 10) and install them in the same browser. We
focus on fingerprintable extensions, since non-fingerprintable ex-
tensions do not perform page modifications and the execution trace
would not change. If we included non-fingerprintable extensions,
it would artificially inflate our reported accuracy, due to the lower
likelihood of extension co-interference. We visit the honeypage 100
times for each set and compute each run’s scores independently.
For the matching task, we attempt to match a given fingerprint
trace with multiple signatures, using the matching algorithm that
we introduced in §3.4. When comparing attribute mutation records
we use the 80% similarity threshold. Table 3 presents the results
of our evaluation. For our analysis, False Positives reflect those
extension signatures that are not actually in the fingerprint trace
but are misclassified as detected by our system. Conversely, False
Negatives are those signatures that are present in the fingerprint
trace but our system fails to detect them. Importantly we note that
we do not have any False Positives since our signature’s structure
and the matching algorithm do not generate mismatches. Contrast-
ingly, Carnus suffered from 0.5-7.25% false positive rates [22]. Our

system’s accuracy is a direct result of our finding that 94% of the
signatures contain unique mutations, as outlined in §4.1.

Overall, Chronos is highly accurate as it identifies 96–99% of the
installed extensions. For the remaining cases, we have identified
two different behaviors that lead to mismatches (FN ≈ 1-4%). In
the first case, the modification that the extension attempts to ex-
ecute has already been performed by another extension, and thus
it does not perform it. For example, suppose extension A changes
the page’s background color from white to red, and extension B ac-
cesses the background color’s value to inject a new element. When
extension B reads the page’s background variable, it is different
from the predefined (white), and in that case it will not perform this
specific modification. The second type of mismatch includes those
extensions that perform a dynamic modification that has not been
captured during the extension fingerprinting phase. Interestingly,
we found cases of extensions explicitly injecting debugging mes-
sages (e.g., “Something is not right at this moment! Please try again
after some time.” ) instead of completing their intended modification.
This behavior could also potentially be used as part of an extension’s
fingerprint since the absence of a specific modification and a “debug-
ging” modification could reveal the presence of an extension. While
these mismatches are part of the extension’s capabilities, since we
cannot currently predict how or when the extension will perform a
different modification due to the interference from a different exten-
sion, we consider this an interesting future direction. Nonetheless,
despite the potential for co-interference, our experiments demon-
strate that Chronos is highly accurate in a realistic deployment
scenario and always achieves an F1-score higher than 98%.

System performance. As we have detailed previously, we use
a threshold of eight seconds during the extension fingerprinting
phase and when fingerprinting users’ extensions in real-time. This
design decision is crucial since it minimizes the time that the user
is required to stay on the website. By design, we offload all the pro-
cessing of the mutations and detection to the server. In practice, the
website will generate the fingerprinting trace after eight seconds,
compresses it, and send it back to the server. The server is then
responsible for decompressing the fingerprint and extracting the
signature. For each signature, it processes the attributes elements,
dispatches the modifications, and finally, handles the removal and
replacement of the dynamic parts of the signatures.

To test the server-side computation overhead, we employ the
same experimental setup for matching fingerprints from multiple
extensions; we measure the time required for the server to pro-
cess the fingerprint trace and the algorithm to match the trace to
the stored signatures. We run this experiment 100 times for N=10
installed extensions to collect a representative number of measure-
ments that provide an upper bound (i.e., the worst-case scenario).
We find that, on average, the server requires 1.5 seconds to detect
10 installed extensions (stdev 0.8) with a median of 0.25 seconds.
This result is expected if we take into consideration the signatures
sizes (§4.1) and the fact that under this experimental scenario, the
average decompressed fingerprint trace size is only 0.6 MB. These
numbers represent the upper-bound of computational overhead
since, in a realistic scenario where the user has a smaller number
of fingerprintable extensions generating mutations, the signatures
will be significantly smaller. In general, while we find that Chronos
is highly efficient, it can be further optimized if an attacker targets
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a specific subset of extension or they employ high-end machines
with multi-threading components for processing and decompress-
ing, and dedicated GPUs for more efficient pattern matching.

4.4 Preventing DOM-based Fingerprinting
DOM-based fingerprinting is particularly robust against defenses
since it essentially captures execution artifacts that are inherent
to a given extension’s functionality and, thus, not trivial to pre-
vent. Nonetheless, certain recent studies have proposed DOM-
fingerprinting countermeasures and defenses to protect user’s pri-
vacy and mitigate such attacks [23, 48]. In more detail, Trickel et
al. [48] proposed CloakX, a system that aims to broadly defend
against extension fingerprinting. Their system employs a set of
heuristics that randomize the ID and class HTML attributes. Since
extensions can inject uniquely identifiable elements, this strategy
attempts to hide the existence of such elements and, thus, prevent
behavior-based detection. CloakX also randomizes the Web Ac-
cessible Resources paths, and also injects random tags, attributes,
and custom elements to make fingerprints noisy and non-uniquely
distinguishable. Since the randomization of ID and Class elements
as well as the WAR paths when included in a WAR URL (see §3)
can potentially affect our signatures, we quantify the effect of this
countermeasure against our system.

To replicate the countermeasure’s effect, we follow an approach
similar to our dynamic identifier replacement. Specifically, we re-
place all ID and Class elements with the keyword “Random” and
also replace all references to the chrome-extension://UID/PATH
with <Random-Path>. We apply the aforementioned randomization
heuristics on the entirety of 11,219 unique detections across the
datasets. The countermeasure results in 124 (≈ 1%) fingerprints
becoming non-unique and generating collisions, with no impact on
the remaining fingerprints. Moreover, 92% of the fingerprints still
have at least one unique mutation, hinting at a minor decline (2%)
compared to the original signatures. Regarding the injection of ran-
dom elements and tags, Chronos is effective at identifying dynamic
signatures and filtering out those mutations that are not present
or stable. Even if CloakX was able to inject random elements in
every extension signature, we would still be able to fingerprint the
majority of extensions based on their unique mutations.

In a different direction, the recent work by Karami et al. [23]
proposes a solution specifically for DOM-fingerprinting. Their ap-
proach separates the DOM that the extensions interact with and the
DOM that the page’s scripts access. Their implementation intercepts
various JavaScript APIs and function calls, in order to control which
information is available to the original and the “parallel” DOM. One
of the APIs they target is the Mutation Observer API, which is
integral to our system. Their countermeasure affects our attack as
our system would be unable to perform continuous fingerprinting
through the Mutation Observer API.

Overall, the first proposed solution of CloakX does not affect
the efficacy and efficiency of Chronos, while the second approach
of Simulacrum impacts our system. Both of these defense mecha-
nisms are significant contributions to the extension fingerprinting
ecosystem since they provide solutions for better protecting users.
As neither one has so far been adopted by browsers, we argue that

our work highlights the importance of browsers adopting these de-
fenses and further exploring this space. We expand this discussion
of countermeasures and other complementary defenses in §6.

5 DISCUSSION
Our work is the first one to observe that DOM-based extension-
fingerprinting is not inherently limited to before/after DOM snap-
shots, that prior work has relied upon [22, 28, 45, 46]. Instead, using
modern browser APIs such as the mutationObserver [10], trackers
can be alerted of any change in a page’s DOM and match these
changes against offline-curated, extension-signature databases. In
this way, trackers can fingerprint extensions that present ephemeral
DOM changes, as well as those with colliding signatures under more
coarse-grained fingerprinting schemes. Using this notion of contin-
uous fingerprinting in our Chronos system, we show that trackers
can uncover thousands of additional extensions that were invisible
to prior state-of-the-art DOM fingerprinting techniques. These find-
ings underline the privacy risks of extension fingerprinting, which
can be used not only as an additional source of user-identifying en-
tropy (such as the users’ screen properties and how their graphics
cards renders complex images) but also as a means of uncover-
ing sensitive socioeconomic information about users based on the
extensions that they chose to install [22].

If we take a step back, we can observe that privacy is becoming
a mainstream concern for browser vendors. Browsers like Brave
and Mozilla Firefox are constantly adding privacy-enhancing mech-
anisms in their browsers, ranging from built-in blocklists for stop-
ping advertising and tracking scripts, to randomizing the values
of fingerprintable APIs (e.g., Canvas) and making certain mech-
anisms entirely unavailable to scripts (e.g., APIs related to bat-
tery status) [5, 16]. Even Google Chrome (which traditionally did
not implement extra privacy mechanisms) has been evaluating
novel privacy-preserving user-targeting techniques for advertising,
through its Privacy Sandbox program [18].

Despite all this progress, extension fingerprinting has not at-
tracted the attention of browser vendors in a way that would
protect extension users by default. With the recent addition of
extension-fingerprinting logic to the web’s most popular browser-
fingerprinting library [24], extension fingerprinting is now becom-
ing available at a global scale, in the same way that canvas finger-
printing is currently available. Moreover, the results of this paper
show that the threat of extension fingerprinting was understated in
prior work, with more extensions being fingerprintable than was
originally thought. We therefore argue that it is imperative that
browser vendors include extension fingerprinting in their threat
modeling and start evaluating possible anti-fingerprinting tech-
niques already proposed by academia, ranging from the further ran-
domization of extensions [48], to strict access control where a user’s
decisions about the context in which extensions should and should
not run, supersede those of extension authors [41, 45]. We hope that
this paper serves as additional motivation to kickstart this process.

6 RELATEDWORK
Since the work of Peter Eckersley [12], who was the first to demon-
strate in 2010 with the Panopticlick experiment that fingerprints
can be used to uniquely identify a user’s device and that they
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can be easily collected at scale, browser fingerprinting has be-
come notoriously prevalent on the web [1, 8, 21]. It is mainly
used for user identification and tracking [1, 14, 51], but lately
this technique has also been deployed for other purposes, such
as bot detection [11, 20, 52] and augmenting authentication mech-
anisms [3, 11, 25, 29]. Many past works have proposed techniques
for expanding the fingerprinting surface, designed countermea-
sures and mechanisms for detecting fingerprinters and prevent-
ing them from tracking users, as well as conducted studies in
order to measure the prevalence and effectiveness of such tech-
niques [2, 6, 8, 14, 15, 17, 21, 26, 27, 30, 31, 37, 43, 50, 51].

A fingerprinting vector that has become prominent in recent
years is the detection of users’ installed browser extensions. Early
studies in this area relied on detecting the presence of specific
web-accessible resources (WAR) that extensions expose [19, 42]. In
another line of work, Sanchez-Rola et al. [38] and Van Goethem
and Joosen [49] proposed a timing side-channel attack that exploits
browsers’ access control mechanism for extensions’ resources in or-
der to infer their presence. However, the countermeasures deployed
by certain browsers or proposed by the research community [41, 48]
have rendered these techniques ineffective.

More recently the research community proposed techniques that
infer the presence of extensions by identifying the side-effects of
their executed functionality, such as detecting the modifications
to the page [22, 46] or changes to its stylistic properties [28], as
well as monitoring the exchanged messages and the resources they
fetch [22, 45]. The work of Starov and Nikiforakis [46] was the first
to demonstrate that extension fingerprinting is feasible through the
detection of their DOM-based modifications. They built XHound, a
framework that patches the extensions’ source code to place hooks
into the functions that extensions use to query the DOM elements,
and dynamically create these elements on-the-fly in their honey-
pages, aiming to trigger extensions’ functionality. Karami et al. [22]
built the Carnus framework and used it to conduct a large scale
analysis on extension behavioral-based fingerprinting. This frame-
work exercises extensions and generates signatures in an automated
way, in order to detect extensions’ presence based on their DOM
modifications, the messages they exchange and the resources they
fetch. However, both of these detection systems take a snapshot
of the honeypage’s DOM some seconds after the page has loaded
and compare it to the original version of the DOM, neglecting the
aspect of time and thus missing extensions that perform ephemeral
modifications. In a recent work, Solomos et al. [44] investigated
how user interactions affect the fingerprintability of extensions.
Specifically, they designed a system that incorporates user interac-
tions, and detected a large number of extensions that are triggered
only through user interactions. This line of work revealed a new
dimension of extension fingerprinting, and their system could be
used in conjunction with Chronos for detecting extensions.

With respect to extension fingerprinting countermeasures, Sjösten
et al. [41] explored how extensions can reveal their presence when
they inject a WAR in the page and the browser implements UUID
randomization (i.e., Firefox). In this case, the injected resource’s
URL contains the extension’s UUID in its path, and since UUIDs
are unique (due to the randomization) the detection of just a single
extension allows the page to uniquely track the user. As a miti-
gation, Sjösten et al. proposed Latex Gloves, a whitelist-based

mechanism that determines which pages are allowed to interact
with an extension’s WARs and which extensions can interact with
each particular website. Starov et al. [45] explored whether the
artifacts that extensions leave in the page, which make them fin-
gerprintable, are necessary for the extensions’ operation. Similarly
to Karami et al.’s [22], this work considers extensions that can be
detected based on the messages they exchange. They found 3,320
extensions that perform modifications unnecessary for their oper-
ation (2,189 of those extensions inject unnecessary elements into
the DOM and 1,526 set unnecessary attributes). However, since this
work utilizes XHound for their exploration, which is a snapshot-
based system and thus blind to ephemeral modifications, it can only
observe modifications that remain on the page, and misses any un-
necessary temporal artifacts that are inserted to the page and then
removed. Recently Laperdrix et al. [28] proposed a technique that
fingerprints extensions based on the cascading style sheets (CSS)
that certain extensions inject in the page. Their approach relies
on including specific elements in the page that extensions expect
(i.e., are triggered by) and observe changes to their style properties
when particular extensions are installed.We consider this technique
orthogonal to DOM-based extension fingerprinting, as we do not
expect extensions to perform temporal stylistic changes, nor have
we observed any such a behavior during our experiments.

7 CONCLUSION
With browser fingerprinting continuing to proliferate across the
web, extension fingerprinting presents a unique threat to users due
to the two-pronged privacy loss that it incurs. More critically, as
DOM-based extension fingerprinting techniques enter the global
stage, accurate assessments and explorations of this fingerprinting
vector are crucial for drawing more attention from the research
community and incentivizing browser vendors to adopt custom-
tailored countermeasures. To that end, in this paper we uncovered
a previously-overlooked yet prevalent behavior in the extension
ecosystem, wherein extensions perform a series of ephemeral modi-
fications. With prior work overlooking the importance of an exten-
sion’s life cycle, these short-lived changes are essentially untraceable
using state-of-the-art approaches. As a result, prior studies do not
capture the full scale of the threat posed by behavior-based ex-
tension fingerprinting. We presented an extensive experimental
evaluation of our prototype system Chronos that highlights the
importance of employing a continuous fingerprinting strategy as we
are able to uniquely fingerprint 4,546 additional extensions, while
also demonstrating how our fine-grained approach is highly accu-
rate in realistic deployment scenarios where multiple extensions are
installed and modify the page. We hope that our work will be a cata-
lyst for additional privacy protections being deployed by browsers.
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