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Trust in SSL-based communications is traditionally provided by Certificate (or Certification) Authorities (CAs)
in the form of signed certificates. Checking the validity of a certificate involves three steps: (i) checking its
expiration date, (ii) verifying its signature, and (iii) ensuring that it is not revoked. Currently, such certificate
revocation checks (i.e., step (iii) above) are done either via Certificate Revocation Lists (CRLs), or Online
Certificate Status Protocol (OCSP) servers. Unfortunately, despite the existence of these revocation checks,
sophisticated cyber-attackers can still trick web browsers to trust a revoked certificate, believing that it is still
valid.

Although frequently updated, nonced, and timestamped certificates can reduce the frequency and impact of
such cyber-attacks, they add a huge burden to the CAs and OCSP servers. Indeed, CAs and/or OCSP servers
need to timestamp and sign on a regular basis all the responses, for every certificate they have issued, resulting
in a very high overhead. To mitigate this and provide a solution to the described cyber-attacks, we present
CCSP: a new approach to provide timely information regarding the status of certificates, which capitalizes on
a newly introduced notion called Signed Collections. In this paper, we present in detail the notion of Signed
Collections and the complete design, implementation, and evaluation of our approach. Performance evaluation
shows that CCSP (i) reduces space requirements by more than an order of magnitude, (ii) lowers the number
of signatures required by six orders of magnitude compared to OCSP-based methods, and (iii) adds only a few
milliseconds of overhead in the overall user latency.

1 INTRODUCTION
Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), are the most popular
standards for secure Internet communications nowadays. An increasing number of web services
are moving away from the traditional plaintext HTTP protocol to the more secure HTTPS [34].
One of the main reasons behind this increased adoption of HTTPS, is the decision of popular
browsers (e.g., Google Chrome) to start showing a “Not Secure” warning for all websites that are
being served over plain HTTP [14]. Indeed, as of November 2019 [28] more than 88% of the web
browsing connections in the USA and more than 80% of the connections in the world currently
being implemented over HTTPS.

Although the primary goal of TLS is to provide confidentiality and integrity for the vast majority
of today’s online communications, the provided security of TLS connections against potential
network attackers depends vitally on the correct authentication and validation of the endpoints’
public-key digital certificates presented during each connection establishment [39]. Responsible for
issuing, validating, and revoking each digital certificate is a Certificate (or Certification) Authority
(CA): a third party entity trusted by both communicating endpoints. Thus, when a web client
connects to a website and receives its certificate, it can trust that this particular public key (contained
in the certificate and signed by the CA) indeed belongs to that website. As a result, Certificate
Authorities create a web of trust that enables complete strangers (i.e., a web client and a web server
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which have never previously communicated) to communicate with each other in a secure and
trusted way.
Apart from issuing certificates, CAs may also need to revoke certificates as well. For example,

when a private key of a website is stolen, the issued certificate needs to be revoked, and users need
to be updated as soon as possible in order to not trust any more the web servers that use this
certificate. There are two main ways for the web browsers to know when a certificate has been
revoked. The simplest and more traditional one is to download from the CA the list of all revoked
certificates (the Certificate Revocation List - CRL) and locally look up if the certificate in question
is included in the CRL. In that case, the certificate has been revoked and should not be trusted
any more. However, the increasing size of these CRLs [13] with median size of 51 KB, reaching as
large as 76 MB in some cases [30, 35], has forced the clients to download CRLs rather sporadically.
Unfortunately, such sporadic updates of CRLs leave clients with a certain window of vulnerability:
between two successive downloads of the CRL clients may wrongly consider a revoked certificate
as valid.
To close this window of vulnerability, the Online Certificate Status Protocol (OCSP) came to

the rescue: CAs maintain available servers, namely OCSP responders, which are able to respond
in real-time to queries about the revocation status of a single certificate. More specifically, OCSP
works as follows: when a web client connects to a website and receives its certificate, the client
queries an OCSP responder about the revocation status of that certificate. OCSP responders consult
their local up-to-date database and are usually able to respond back to the browser, in most cases,
in less than one second [36]. To avoid replay attacks, web clients usually provide OCSP responders
with a cryptographic nonce and require OCSP responders to digitally sign their reply, including the
nonce. To improve performance even further, some OCSP responders solicit the help of widely
deployed Content Delivery Networks (CDNs) [2, 46], such as Akamai [37], managing to reduce
their response time to less than a tenth of a second.

In the same spirit, DCSP [4], a newly introduced protocol, solicits the help of DNS resolvers and
proposes to store revocation information in the publicly accessible DNS infrastructure. With the
help of DNS, and its associated lightweight UDP protocol, DCSP is able to reduce end-user latency
to just a few tens of milliseconds.
Although OCSP and DCSP provide good performance and timely information, they share a

common characteristic: it is the receiver of the certificate (i.e., the web browser) who has to retrieve
the required revocation information and verify whether the certificate is still valid or not. Thus,
the receiver (i) has to download the certificate from a web site and (ii) verify that the retrieved
certificate is indeed valid by contacting a third party directory such as the OCSP responders, the
CDNs, or the DNS system. This usually incurs an extra TCP or UDP connection to the web client,
increasing overhead accordingly.

OCSP Stapling and Must-Staple [8, 12, 19], on the other hand, provide a different type of solution:
They advocate that it is not the receiver but the supplier of the certificate who has the responsibility
to provide enough evidence to convince the client that the certificate is valid. In this aspect, the
web server provides the web clients with two pieces of information:

(1) The certificate itself (much like previously).
(2) Revocation information about the certificate, signed by the issuer CA. This revocation infor-

mation would be practically the same as the reply of the OCSP responder.1

To put it simply, under OCSP stapling the web server provides the web client (i) with the certificate,
and (ii) with a signed confirmation that the certificate has not been revoked. OCSP Stapling is fast,

1 Certificate Transparency[26], explained in depth in Section 2, provides a third piece of information as well: a signed proof
that the certificate has been included in a publicly-accessible Log.
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does not force the client to contact any third-party services, and has a low overhead. To keep its
overhead as low as possible, web servers typically update the signed confirmations sporadically -
once every few days or once a week. Unfortunately, during this period (i.e. between two updates)
OCSP stapling is susceptible to man-in-the-middle attacks (MITM[42]).2 Indeed, an attacker who
has managed to steal the private key of a web server may provide to a victim browser an old (now
revoked) public key and an old signed confirmation that the certificate has not been revoked. Since
both the certificate and the confirmation are signed, the victim browser has no other option but
to accept the old (now revoked) public key. Then, it will start communicating with the attacker
believing that it communicates with the legitimate web server.
One way to mitigate this attack is to timestamp the revocation information before signing it,

and pushing it to web servers to be served via OCSP Stapling. In this way, when a client receives
OCSP Stapling information, it will first check the timestamp of the information. It will accept
the revocation information only if the timestamp is recent: old timestamps are probably a sign of
man-in-the-middle attacks. Although fine-grain timestamps (every few seconds or so) could solve
man-in-the-middle replay attacks by minimizing the window of vulnerability to no more than a
few seconds, the frequent timestamping and signing would impose a tremendous load on the OCSP
responders.

To address the overheads imposed by frequent timestamps and signatures, in this paper, we design
and implement CCSP3 (Compressed Certificate Status Protocol): a new approach for timestamping
and signing Certificate Revocation responses. CCSP is based on Signed Collection which provide
revocation information not for a single certificate (like what OCSP and OCSP Stapling do), but
for a collection of certificates. Since Signed Collections require just one signature for an entire
collection of certificates, they have the potential to reduce the number of signatures needed and the
associated overhead. Our approach saves more than six orders of magnitude signatures compared
to state-of-the-art OCSP Stapling, and more than two orders of magnitude storage space compared
to traditional CRLs.

To summarize, we make the following contributions:

• We introduce a new abstraction: the abstraction of Signed Collections that can be used to
communicate revocation information in a very compact form.

• We present the detailed design of CCSP: an extension to OCSP and OCSP Stapling, which by
using Signed Collections manages to improve performance by several orders of magnitude.

• To explore the trade-offs and applicability of our approach in the real world, we implement
a fully functional prototype inside the popular GnuTLS library. In addition, we conduct an
experimental evaluation to asses its imposed overheads. Our results show that it adds negli-
gible overhead to the user experience compared to the state-of-the-art certificate revocation
checking approach.

• We further evaluate CCSP using both simulation-based and experimental evaluation. Our
results show that: (i) CCSP is able to pack revocation information for more than one million
certificates in less than 10 KB of space, (ii) CCSP is able to reduce the number of required
signatures by more than 6 orders of magnitude, and (iii) CCSP requires an average traffic
rate of only a few bytes per second.

Paper Organization: Section 2 covers in full detail the advantages and disadvantages of the
different existing approaches, and relates CCSP to other works in the field. Section 3 describes
2The shorter the validity period the larger the number of cryptographic signatures required, and the higher the overhead
will be to transmit them.
3First proposal of this work appeared in [5]
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the threat model of the paper and portrays the capabilities of the adversary, as well as a possible
attack scenario. Section 4 presents, in full detail, the design of CCSP and introduces the notion of
Signed Collections. Section 5 and Section 6 present the analysis and simulation-based evaluation
regarding compression and deltas. Section 7 describes the implementation of the CCSP prototype,
while Section 8 presents an experimental evaluation of this prototype. Finally, Section 9 discusses
various aspects of our approach and Section 10 concludes the paper.

2 RELATEDWORK ON CERTIFICATE REVOCATION ALTERNATIVES
In this section, we present the different approaches proposed in the literature as alternatives to the
current state-of-the-art of OCSP- and OCSP Stapling- based certificate revocation. Then, we put
our work into the context.

2.1 Revoke the trust from Certificate Authorities
Although most CAs are considered trusted, there exists a significant body of literature which
assumes that CAs should not be trusted and should be replaced by some other mechanism. Per-
spectives [44], for example, is a project that later inspired the Convergence [16, 31] strategy for
replacing CAs; it employs a crowdsourcing network of “notary servers”, which build a global
database of certificates used by each site, by regularly monitoring websites. These notary servers
can be maintained by anyone e.g., organizations, institutions, private companies, the EFF, Google,
Universities, or even a group of friends. By allowing several entities to maintain information about
certificate status, the users are free to pick the entity of their trust, and query the validity of a
certificate. Unfortunately, this operation imposes a significant amount of latency to the users’
browsing TLS sessions. To make matters worse, to ensure the validity of the response, the user
may need to query more than one notary server, and consider the response of the majority, an
operation that significantly increases the certificate verification latency.

Over the past few years, Certificate Transparency[26] (or simply CT) has become widely popular.
Aiming to address the issue of rogue, or compromised, Certificate Authorities, CT advocates that
all valid certificates should be publicly and widely known. To support this publicity, CT maintains
several independent certificate Logs: append-only repositories of all known certificates. When a CA
issues a certificate, it adds the certificate to a Log and is given back a receipt (a signed certificate
timestamp (SCT)). When a client receives a certificate from a web site, it also demands the signed
certificate timestamp (SCT): the proof that this certificate is included in some publicly available Log.
If the client does not receive the receipt, it does not trust the certificate. Certificate Transparency
is an excellent way to deal with rogue or compromised CAs. Indeed, if a rogue CA includes fake
certificates in some Logs, they will be easily spotted by the website owners who periodically scan
all Logs for fake certificates. On the other hand, if the rogue CA does not include its certificates
in any Log, it will not receive the SCT, which will result to its web clients not accepting these
certificates. In both cases, rogue CAs will not be able to continue their nefarious activities without
being noticed.

Although Certificate Transparency deal with rogue CAs, it does not explicitly deal with revocation.
Indeed, as noted in the FAQ of CT’s official website [27]: “Certificates are revoked in the usual way
and Certificate Transparency does not change that. It provides a mechanism by which you can know
that a certificate needs to be revoked, but does not itself handle revocation.” Having said that, there
exist some approaches aiming to integrate revocation in CT. For example, Revocation Transparency
(RT) [25], provides a way to supply fresh revocation information. Unfortunately, careful studies of
RT [38] suggest that the original RT proposal has overhead linear to the number of revocations.
As the number of revocations increases with time, such an overhead is probably prohibitive for
most practical applications. Although recent work has reduced the overhead to logarithmic [38], it
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may still be high compared to other Certificate Revocation approaches that respond in (average)
constant time.

Chen et al. in [6] propose a blockchain-based certificate audit scheme for TLS connections named
CertChain. Their approach includes four entities: the client, the CA, the domain (website) and
the bookkeepers, which record the certificate operations into the blockchain. In their solution
when clients want to verify a certificate they need to contact a bookkeeper, which looks into the
blockchain in an efficient way, and receive back a response with the certificate status. Contrary to
our approach, CertChain responses contain information only for the certificate in audit, which in
the majority of the cases, poses a higher latency than CCSP because of the extra communication.
Larisch et al. in [24] propose CRLite, which aggregates revocation information for all known

valid TLS certificates. By utilizing the filter cascade data structure, CRLite can store efficiently all
the revocation information available without false positives. Similar to our approach, CRLite aims
to provide the latest revocation information in the most space efficient way. However, contrary
to our solution that only needs a few KB for a full collection and even less for the delta, CRLite
requires several MB for the initial list and about 580KB for each delta.
Schulma et al. in [40] introduce RevCast, a system which uses low bit-rate radio broadcast (in

their case FM) to deliver revocation information in a timely, scalable and privacy preserving manner.
Although they prove the viability of their approach through real world experiments, there are
some hard to overcome obstacles. Specifically, their solution would require several changes to
the infrastructure responsible to deliver the revocation information as well as the adoption of FM
receivers from all the end-host devices.

2.2 Leveraging the DNS infrastructure
DNS-based Authentication of Named Entities (DANE) [21] is another approach towards the direction
of replacing Certificate Authorities. DANE leverages the DNS infrastructure to distribute the public
key of the website. To achieve that, DANE introduces a new type of DNS record, named TLSA,
in which it stores the whole certificate of a domain, and uses DNSSEC to validate its integrity.
Unfortunately, it is absolutely dependent on the deployment and validation of DNSSEC, the latter
of which has remained stagnant at around 20% worldwide [3]. To make matters worse, a study [47]
has shown the current DANE deployments have security inconsistencies. In addition, given that it
stores the entire certificate in TLSAs, 33% of the responses analyzed were larger than 1500 Bytes,
thus resulting to IP fragmentation, imposing this way additional latency to the query procedure
and leaving the protocol vulnerable to fragmentation attacks [20].
DNS-based Certificate Status Protocol (DCSP) [4] leverages the existing DNS infrastructure to

distribute certificate status information without abolishing the role of CAs. On the contrary, DCSP
assigns to the CAs the responsibility of maintaining and signing the DNS records, guaranteeing
in this way their validity and freshness. it uses DNS as a fast cache, and capitalizes on multiple
DNS TXT type records to allow CAs to publish the revocation information of certificates. In that
way, DCSP (i) achieves better performance than traditional OCSP, and (ii) preserves the privacy of
the user’s browsing history. However, utilizing the existing DNS infrastructure requires specific
changes to the way CAs handle certificate revocation. In CCSP, we extend the current revocation
mechanism, thus allowing our approach to be more easily applicable. Finally, by further improving
the grouping abstraction of DCSP, we are able to significantly reduce the number of signatures
required by each CA.

2.3 The Google Approach
Chromium browser and thus Google Chrome and Brave use CRLsets [22]: a compressed list of a
small set of revoked certificates (similarly Mozilla Firefox uses OneCRL [17]). In this way, web
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browsers may have handy revocation information about a (small) set of revoked certificates, so
that most of the time they will be able to check the revocation status locally, and quickly. CRLsets
have great performance when they encounter a hit, but need to resort to OCSP (or similar) when
the certificate they are looking for is not included in it. Given that CRLsets cover less than 1% of
revocations [30], there may be room for further improvements, that will deal with the remaining
99% of revocations.

2.4 Adoption in the web
In a more recent work [43] the authors investigate how different browsers implement the validation
process of TLS. They report inconsistent behavior among the browsers with potential dangers for
the users. They suggest that the reasons behind those inconsinstencies are the complexity of the
standards and the absence of coordination between the browser developers. Interestingly enough
they also report that current revocation mechanisms suffer from performance overheads or other
limitations which can affect the user experience. In [9] the authors check whether the web supports
correctly the OCSP Must-Staple protocol. They collect a large corpus of certificates to understand
the adoption of OCSP Must-Staple. They discover that just 0.02% of the web actually adopts this
protocol and even in that cases they found several errors across all the infrastructure, starting from
misconfigured and unavailable OCSP responders, to wrongly developed web servers. They also
note that all but one of the major browsers do not actually check correctly the OCSP responses.

2.5 Where does CCSP fit in the spectrum?
CCSP is not competing to, but is complementing most of the previous approaches. By introducing
the abstraction of Signed Collections, it is able to encode revocation information not only for one
certificate, but for a large set of certificates into a very small space. This encoding can be used in
several existing revocation approaches that would like to pack as much revocation information into
as little space as possible. For instance, OCSP enriches each OCSP response with a nonce and signs
each reply including the nonce in the signature. The introduction of timestamped Signed Collections
can substitute the use of nonces. This is because the timestamp is a unique number (much like nonce)
which is up-to-date and recognizable by all clients (assuming they have relatively sycnhronized
clocks. Note, however, that Signed Collections need to be signed once for each timestamp no matter
how many clients are going to receive the signed collection. The utilization of Signed Collections
can increase user privacy, improve the overall performance and significantly reduce the number of
signatures (more details can be found in section 9).

3 THE THREAT MODEL
In this paper, we assume that the attacker is able to launch a man-in-the-middle (MITM) attack
against a victim. This attack can happen in a variety of settings, including, for example, the attacker
(i) controlling a public, free Wi-Fi, (ii) controlling a VPN the victim uses, (iii) and installing a rogue
Wi-Fi router. In addition, we assume that the attacker managed to get access, possibly through
hacking, to the private key of a web site (that will be revoked). We finally assume, that after realizing
this hacking event, the web site, as expected, revoked its certificate.

By deploying such an attack, the adversary is able to assume the identity of a legitimate owner of
the certificate, and by falsifying responses from DNS and/or HTTP endpoints (via the MITM attack),
the adversary manages to successfully impersonate the owner of the certificate. As a consequence,
the attacker can deceive users, making them establish wrongly trusted TLS connections with it,
and exchange secrets as if it was the actual legitimate party. The goal of our approach is to make
the clients aware of the impersonation attack, in order for them to abort the connection with the
adversary soon enough, to prevent any possible leakage of private information.
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3.1 Possible Attack Scenario
Based on the assumptions above, a possible attack scenario may be the following: When a victim
tries to connect to the web site (whose certificate has been revoked), the attacker (who managed
to launch a MITM attack) presents the victim with the old (revoked) certificate, which was valid
sometime in the recent past. To convince the victim that the certificate has not been revoked, the
attacker will replay to the victim an old but signed OCSP Stapling response, claiming that the
certificate is still valid. Once presented with a signed OCSP Stapling response, the victim’s web
browser will assume that the certificate is valid (even though it has been revoked), and will start
communicating with the attacker thinking that it is communicating with the legitimate web site4.
Similarly to the case of OCSP Stapling, a man-in-the-middle attack can be also launched in

the case where OCSP responses are served by a Content Delivery Network (CDN). The attacker,
who has managed to launch a man-in-the-middle attack, is able to impersonate both the web site
and the CDN-based OCSP responder. When a victim tries to connect to the web site, the attacker
presents the victim with the old certificate. Furthermore, the attacker, who is able to impersonate
the CDN-based OCSP responder, presents to the victim the old but signed OCSP response, tricking
the victim to believe that the certificate is still valid. Then, the victim’s web browser will start
communicating with the attacker, thinking that it is communicating with the legitimate website.

From that point onwards, the victim is in a downward spiral: they will probably supply their real
password to the attacker, disclose personal information, and, depending on the web site’s expected
functionality, may suffer identity theft, may be tricked to install malware, and may even suffer
financial losses.

3.2 The Need for Timely Revocation
Although such attacks can be considered rare and not easy to launch, the damage they can perform
is severe, including monetary loss, loss of privacy, security, or in critical systems (e.g., medical
devices) even loss of life. Should an attack like the above be carried out, the victim and their
software have no way to distinguish if the website is indeed the correct one, or one presented
by the attacker. One might think that the green browser “padlock” and the “Secure” indicator of
browsers might provide a warning, but they can still be tricked and will wrongly re-assure the user
that he is communicating with the correct web site5. Studies have measured the revocation rate
to be around 8% [18, 30], or 180,000 in absolute numbers (as measured by the popular Certificate
Authority Let’s Encrypt[29]), which is quite high considering a window of vulnerability of up to
seven days, and even more in some cases. Note, that incidents like Heartbleed may skyrocket the
rate of revocations: e.g., from 29 certificate revocations per day before Heartbleed, it reached to an
average of 1,414 revocations per day right after Heartbleed was publicly disclosed [45].

3.3 The Solution Framework
Defending against the above kind of attack is not easy. By managing to issue a man-in-the-middle
attack, the attacker has enclosed the victim in a fake virtual world and may provide fake information
at will. One way for the victim to break out of this fake world is to ask for timely information: i.e., ask
for information that is timestamped with the current time and signed by a trusted third party (such
as a CA). In the context of OCSP Stapling, this would imply that CAs should frequently timestamp
and sign all OCSP Stapling responses. Thus, when the browser is presented with a response that

4 Several recent security incidents have exposed the problem of rogue CAs: that is, CAs which provide bogus certificates or
bogus information. The recently proposed “Certificate Transparency” manages to uncover such rogue CAs as explained in
the related work section. However, the detection and mitigation of such Rogue CAs is outside the scope of this work.
5Google removed green padlock icon in Chrome since only HTTPS supporting websites will be accessible[1].
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has an old timestamp, it will just reject the response and its associated revocation information as
stale. Unfortunately, timestamping and signing all OCSP Stapling responses very frequently (say
every few seconds or so) may place a tremendous burden on CAs and OCSP responders who may
have issued tens of millions of certificates and are now required to timestamp, sign, and distribute
millions of responses per second.

To reduce this overhead, in this paper we introduce Signed Collections: an abstraction that packs
revocation information not for a single certificate, but for a collection of certificates, in a single
response, and thus, reduces the associated number of required signatures by several orders of
magnitude. For example, 1,000,000 revocation bits can be packed together requiring only one
signature operation, instead of one signature operation for each and every certificate. Hence, CCSP
needs about 6 orders of magnitude less signature operations than the above case of frequently
timestamped OCSP Stapling responses6.

4 DESIGN
4.1 High-level Design
CCSP introduces the notion of Signed Collections: an abstraction that enables us to pack revocation
information about several certificates in a single OCSP response. This response, i.e., the Signed
Collection, is actually a bitmap. Each bit of the bitmap corresponds to the revocation status of a
single certificate: if the bit is “1”, the certificate that corresponds to this bit is revoked; if the bit is
“0”, the certificate is still valid. We call these bits Revocation Bits, because they provide information
about the revocation status of certificates.
When a certificate C is issued, the issuer CA assigns it to a Signed Collection SC . The name of

this Signed Collection, as well as the certificate’s index in the collection, which corresponds to the
revocation status of this certificate, is included in the certificate itself. So, when a client connects
to a web site, it receives the certificate C , which contains the name of the Signed Collection (i.e.,
SC) and the index i of the certificate within the collection. Then, if the client is provided with an
OCSP Stapling response, it will contain SC . If the web server does not support OCSP Stapling, the
browser will fetch SC from an OCSP Responder, possibly hosted in a CDN near the user. Finally,
the client will check the certificate’s validity bit SC[i]. If this SC[i] value is “1”, the certificate has
been revoked. If this value is “0”, the certificate is still valid.

4.1.1 Compression.
One might think that in a Signed Collection (which is essentially a bitmap) of size S (SC[1..S]), we
can fit revocation information for about S certificates and no more than that. Fortunately, in our
design we show that it is possible in S bits to fit revocation information for more than S certificates.
Although this may sound counter-intuitive, we can easily achieve it using compression. Actually,
we compress along two dimensions: (i) space, and (ii) time.

(1) Space: If we take a careful look at a Signed Collection SC , we will realize that most of the
bits in the bitmap SC[] are “0”. This should be expected since most of the time, most of
the certificates are not revoked: that is why most of the bits are “0”. Experimental results
suggest that for most CAs less than 1% of the certificates are revoked [30], reaching as low
as 0.2% in some cases [29]. This implies that roughly more than 99% of the bits in the SC[]
bitmap will be “0”. Thus, simply compressing such a bitmap may reduce its size significantly.
For the purposes of this work, we support two compression algorithms: (i) the DEFLATE

6One may suggest a selective approach where only some of the OCSP responses get frequently timestamped (see Section 9.2).
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compression algorithm which is a variation of LZ77 [48], and (ii) the Golomb compression
algorithm [15].

(2) Time: Recall, that in CCSP we timestamp and sign each Signed Collection periodically - once
in every, what we will call from now on, epoch. Taking a closer look at these periodic releases
of a given Signed Collection, we see that they are very similar to each other. That is, each
periodic release of a Signed Collection has little, if any, changes compared to the release of
the same Signed Collection of the previous epoch. Indeed, in the time period of an epoch,
which is in the range of seconds or at most minutes, we expect only a very small number of
certificates, if any at all, to be revoked. Thus, if instead of releasing each Signed Collection
from scratch at the beginning of each epoch, we release the Signed Collection’s changes (its
delta compared to a previous version), then we will be able to reduce the size of the released
Signed Collections significantly.
To put the compression algorithm in focus and explain the two forms of redundancy, we
divide the time into epochs and eons. For the purposes of this work, an eon is a time interval
in the range of hours and an epoch is a time interval in the range of minutes or seconds.
Using this terminology, each Signed Collection has to be downloaded once per eon, while
at each epoch we need to download only the Signed Collection’s delta from the start of the
current eon. The latest SC delta in the current eon contains all the revocation information of
the previous epochs in that eon, making sufficient to download just the latest delta to retrieve
the most recent revocation information.

4.2 Detailed Design
4.2.1 Certificates.
CCSP extends the definition of the Certificate with two fields:

• “SignedCollection”: this is the OCSP URL of the Signed Collection SC in which this certificate
belongs. This field contains the OCSP Responder and path to obtain the needed SC . It always
starts with “https://”.

• “SignedCollectionIndex”: this is the index in the Signed Collection bitmap. The bit pointed to
by this index contains the revocation information of the certificate.

4.2.2 OCSP Responders.
In order to implement CCSP, some changes are required in the OCSP Responders. To successfully
serve the Signed Collections, each OCSP Responder must accept HTTP “GET” requests to the
path “/ccsp/SC-UID/sc”, where SC-UID is the unique identifier of each Signed Collection. This
path, up to and including SC-UID is contained in the “SignedCollection” field of the certificate. In
order to serve the deltas within an eon, the OCSP Responder must accept HTTP “GET” requests
to the path “/ccsp/SC-UID/delta”, where SC-UID is, of course, the unique identifier of the Signed
Collection. Note that the users are able to receive only the latest delta and not the previous ones
since they are not needed in order to retrieve the current state. The reason behind the selection of
these paths, is that there is no special software modification required and a simple web server can
be used to serve everything as static content. This is especially useful for CAs that employ CDNs,
because they only need to push all the files once and have the CDN cache them globally, instead of
requiring an origin pull in case of a cache miss. This ensures 100% cache hit rates and also does not
require any additional code that may introduce complexity and/or bugs.
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4.2.3 OCSP Stapling Web Servers.
Web Servers can support CCSP and accelerate the user experience by serving the Signed Collections
during the TLS handshake. This eliminates the need for a connection to an OCSP Responder. In
order to support this feature, web servers need to be able to send two stapled responses: (i) the
Signed Collection for this eon, and (ii) the Signed Collection’s delta for this epoch. Although
sending both responses will not add significant size to the response, the client can specifically
request only the delta if it already possesses the latest Signed Collection (i.e., received from a
previous connection). These responses can be served by the existing OCSP Stapling mechanism of
web servers, with only slight modifications.

4.2.4 Signed Collections.
A Signed Collection is a response provided by an OCSP Responder and is updated every eon. It
contains the following fields:

• VERSION: the version of CCSP used, as an 8-bit unsigned integer, to accomodate future
changes

• HEADER: a 16-bit field with only the first bit currently used as a “delta bit”: if set to “1”, this
response is a delta and not a full Signed Collection

• SIZE: the size of the compressed bitmap, in bytes, as a 32-bit unsigned integer
• BM: the compressed bitmap, in raw bytes
• SC-UID: the unique identifier of the Signed Collection, in ASCII, null-terminated, and exactly
as it appears in the “Signed Collection” part of the certificate

• EON: the eon identifier, i.e., the date and time, as a 64-bit unsigned integer
• COMPRESSION: the ID of the compression type used in the bitmap7, as a 16-bit unsigned
integer

• SIGNATURE: the cryptographic signature by the CA which can be calculated by signing a
cryptographic hash of the concatenation of the fields above, in raw bytes

4.2.5 Signed Collection Deltas.
For every epochwithin an eon, a new delta needs to be produced. This delta consists of the following
fields, with the same size and type as the ones above:

• VERSION: the version of CCSP used
• HEADER: a 16-bit field, just like above
• SIZE: the size of the included data
• DATA: the data of the delta, in raw bytes
• SC-UID: the unique identifier of the Signed Collection of this delta, exactly as it appears in
the “Signed Collection” part of the certificate,

• EPOCH: the epoch identifier of the current delta
• COMPRESSION: the ID of the compression type used for the data, just like previously
• SIGNATURE: the cryptographic signature by the CA, calculated similarly to the signature of
Signed Collections

A delta can be computed in two ways. The first way is by calculating the output of the bitwise
“XOR” of the Signed Collection bitmap in the current eon with the latest state of the bitmap in the
current epoch. This will produce a new bitmap in which all bits will have a value of “0” unless their
7 We currently support Golomb and DEFLATE compression. More compression algorithms can be easily added. The current
IDs are “0” for no compression, “1” for DEFLATE, “2” for Golomb, and “3” for Index Based Compression.
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Notation Explanation
S size of compressed bitmap
x number of revocations per eon
r size in delta needed for each revocation
k average time (in epochs) between two revoca-

tions of any certificate in a signed collection
Table 1. Summary of Notation

corresponding certificates have been revokedwithin the current eon. This bitmap is then compressed
with an algorithm and added in the “DATA” section of the delta. The client can decompress and
reconstruct the latest bitmap by performing bitwise “XOR” between the latest Signed Collection
and the latest delta.

The second way involves Index-Based Compression. This method does not create a bitmap but a
list of the indices of the positions that turned into “1”. The CA calculates a bitmap with the method
used above and then determines the positions of “1”s in this bitmap and appends them in the
“DATA” area of the response, as 32-bit unsigned integers. The client then switches all bits in the
Signed Collection to “1” if their index in the Signed Collection is included in this list.

5 ANALYSIS
For the purposes of system description we have assumed that an eon is a time interval in the
range of several minutes or hours. One might wonder, however, how frequently we should
start a new eon. Actually, there is a very interesting trade-off here: a very short eon will
force CCSP to transfer the entire revocation bitmap (even if compressed) frequently. On the
other hand, a very long eon will allow the deltas to slowly increase in size until they are not
space-efficient any more. In this section, we will try to find an optimal value for the length of the eon.

Assumptions: In the rest of this analysis, we make the following assumptions, which are also
summarized in Table 1:

• the length of the eon (in certificate revocations) is x .
• the size of the entire bitmap in bytes (compressed with Golomb compression) at the start of
an eon is S .

• we expect to have one certificate revocation in the bitmap every k epochs.
• each revocation will increase the delta by size r .

Analysis: Based on those assumptions, it seems that after the 1st revocation, the deltas will have
size r , after the 2nd revocation: 2r , after the 3rd revocation: 3r , ..., and after x revocations the deltas
will have size xr . This implies that after x revocations (i.e. at the end of the eon), we will have sent
kx deltas (recall that we assume that we have 1 revocation every k epochs) with a total size of:

x∑
i=1

kir =
krx(x − 1)

2

So, in the duration of x revocations the total information transferred (initial bitmap plus deltas)
will be:

S +
krx(x − 1)

2
So, the average size of deltas will be:
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I (x) =
S

kx
+
r (x − 1)

2
(1)

To find the optimal value of x , we will just need to take the derivative of the above size of deltas
and solve for x . So:

dI

dx
= −S/(kx2) + r/2,

which when solved for x gives the optimal value of x to be:

x =
√
2S/(kr ) (2)

The actual values of S , k , and r may vary from system to system and thus the optimal value of x may
slightly change. For the purposes of illustration, let us assume some reasonable values for S , k , and
r and try to calculate the bandwidth needed to support CCSP. Our experiments in the next section
will show that we need less than 10 KB to store revocation information for one million certificates
and thus a reasonable value for S would be: 10 KB. The choice for r is straightforward: 4 bytes - the
size of a 32-bit long word. Finally, for k we assume a rather frequent certificate revocation process:
one revocation per each epoch, so k is 1. Plugging these numbers in equation 2 gives us an x close
to 71. This implies that every 71 epochs or so, we should start a new eon. The average information
that will be transferred per epoch (from equation 1) would be:

I (x) =
S

kx
+
r (x − 1)

2
or

I (x) =
S

k
√
2S/(kr )

+
r (
√
2S/(kr ) − 1)

2
or

I (x) =

√
S2

k2(2S/(kr ))
+

√
2r 2S
4kr

− r/2

or

I (x) =

√
Sr

2k
+

√
rS

2k
− r/2

or

I (x) =

√
2rS
k

− r/2

which implies that at each epoch we need to transfer the following amount of bytes:

I (x) =

√
2rS
k

− r/2 (3)

For the values of S , k , and r , which we have assumed, (i.e. S = 10 Kbytes, k = 1, r = 4 bytes) the
above equation, as can be also seen in Figure 1, implies that we need to transfer an average of 284
bytes per epoch. Given that each epoch is around 60 seconds, we need to transfer about 5 Bytes per
second which is a trivial overhead to pay by today’s standards.
Finally, in Figure 1, we simulate the average size of deltas for 3 different cases of certificate

revocation rates: (i) a low rate of 0.1 revocations per epoch, (ii) the rate of 1 revocation per epoch that
was described above and (iii) an extreme scenario of the high rate of 10 revocations in each epoch.
As can be seen, even in the scenario of a high certificate revocation rate, the average overhead
imposed to the user is only about 15 Bytes per second.
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6 SIMULATIONS
6.1 The effect of Spatial Redundancy: how much space do you need to store one

million bits?
At first, we set out to explore whether we can effectively compress revocation information. For
the purpose of this study we assume that we have a Signed Collection of one million revocation
bits and we would like to find how much space it needs to be stored. Apparently, in the absence
of compression we would normally need 1,000,000 (certificates) / 8 (bits per byte) or roughly 122
KBytes to store 1 million revocation bits. However, CCSP employs spatial compression using LZ77
or Golomb which implies that we may be able to “squeeze” 1 million bits in less than 122 KBytes.
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Obviously, the effectiveness of compression depends on the type of data we want to compress.
Indeed, if we want to compress random data (e.g. a sequence of “1” and “0” generated by a random
number generator with equal probability each), then compression will have little effect: the data
will be “too random” to be compressed efficiently. On the other hand, if the data consist only (or
mostly) of “0”, then compression will be very effective. In our case, the effectiveness of compression
depends on the number of revocation bits set to “1”, which is basically the number of revoked
certificates. Although the percentage of revoked certificates may vary form one CA to another, it
is usually in the range of 1%. Actually “Let’s Encrypt”, one of the largest and most popular CAs,
reports less than 0.2% revoked certificates [29].
Figure 2 shows how much space is needed to store 1 million Revocation Bits using the two

compression approaches we employ: LZ77 (CCSP-LZ77) and Golomb (CCSP-Golomb) as a function
of the percentage of revoked certificates. The first thing we notice is that both versions of CCSP
(i.e., both CCSP-LZ77 and CCSP-Golomb) perform well. Indeed, for revocation rate close to 1%
CCSP-Golomb requires roughly 8.8 KBytes. For revocation rate close to 0.1% the space requirements
for CCSP-Golomb drops to just a bit higher than 1 KByte (i.e., 1.24 KBytes): two orders of magnitude
less space than the “uncompressed” case. CCSP-LZ77 is a bit higher but stays in the same range.
That means that preferring LZ77 due to its easier implementation, wide adoption by browsers,
speed, and lower memory footprint will come at minimal bandwidth cost, compared to Golomb.
What we learn from this Figure is that it is possible to hold revocation information for millions of
certificates in just a few KBytes of space. We believe that these results debunk any concerns about
the space needed to hold revocation information and open the road for CCSP and similar solutions
to certificate revocation. Given that we have such small space requirements, one might wonder
if we still need both eons and epochs, or if eons would be enough. This is a reasonable concern.
However, having both eons and epochs allows Signed Collections to contain a larger number of
certificates - several million certificates - or even tens of millions of certificates. Given that the size
of deltas in epochs is no more than a few Kbytes, epochs can be as small as a few seconds, even
when Signed Collections contain tens of millions of certificates. At the same time, the computation
costs for signatures and verifications are rather small or even unoticeable: a modern-day computer
can verify close to 60,000 RSA-2048 signatures per second (per thread).

Finding: One to Two KBytes of space is all you need to store revocation information
for one million certificates.

6.2 Would Bloom Filters achieve better compression?
CCSP proposes an exact way to representing Revocation Bits: it uses one bit for each certificate;
the value of the bit represents whether the certificate is revoked or not. On the other hand, it has
been proposed that Bloom Filters may possibly reduce space requirements [30] compared to exact
methods. Although Bloom filters are very efficient at representing sets of objects using only a
very small amount of memory, they do suffer from false positives. In our case this means that it
is possible that a non-revoked certificate can be reported by Bloom Filters as revoked (i.e., false
positive). To mitigate false positives, Bloom Filters may fall back to search the entire bitmap (or the
entire Certificate Revocation List) when they have a false positive. Actually, since Bloom Filters
can not distinguish false positives from true positives, they need to consult the entire list whenever
they encounter a positive (False or True). Despite their false positives, Bloom Filters have small
space requirements and we would like to explore what are their space needs compared to CCSP.
For the purposes of this evaluation, we assume that we have 1 million certificates, a small

percentage of which are revoked. This information can be stored as a Signed Collection (much like
CCSP does) or as a Bloom Filter (much like it was proposed in [23]). Note that the actual space
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Fig. 3. Space required to store revocation information for one million certificates, using bloom
filters and our approach, both compressed with the Golomb compression algorithm.

requirement for Bloom Filters is influenced by the false positive rate they are willing to tolerate.
Indeed, the lower the false positive rate, the larger the number of “0” they will have and thus,
the larger the size needed by the Bloom Filters. Typical false positive rates in the literature range
between 0.1% and 1%. Higher false positive rates may nullify the speed benefits of Bloom Filters
and lower false positive rates may result in extremely high space requirements.
In this experiment, we find the space requirements of Bloom Filters for false positive rates

between 0.1% and 1%. For both CCSP and Bloom Filters we use Golomb compression to reduce
their size to (almost) the minimum possible. Figure 3 presents the size of the Signed Collection
of CCSP-Golomb and the size of the Bloom Filter as a function of the percentage of the revoked
certificates. We see that for a revocation rate of about 1% the size required by CCSP is a bit less
than 10 KBytes - as expected. This size increases with the higher percentage of revoked certificates
and reaches a bit more than 30 KBytes for 5% revoked certificates. In general, Bloom Filters (both
for 1% and for 0.1% false positives) seem to require more space than CCSP-Golomb. If we focus to
percentages (or revoked certificates) smaller than 1% (inset plot), the size required for Bloom Filters
(1%) is barely smaller than the size required for CCSP. For example, for a percentage of revocation
certificates equal to 0.5%, CCSP-Golomb requires 5.2 KBytes of space, while “Bloom Filters-1%”
require 4.6 KBytes, and “Bloom Filters-0.1%” require 6.4 KBytes. It is true that for 0.5% revocation
rate “Bloom Filters-1%” seem to need about 10% less space than CCSP-Golomb but they have a
hidden cost: false positives. Indeed, in 1% of the cases they will require the clients to consult the
entire CRL, which implies an extra TCP connection to the CA. Since, at the time of this writing, the
benefits of Bloom Filters (as a compression function) are not really clear compared to other methods
(e.g., Golomb compression), we have not included them among the compression functions in the
“Signed Collections” record. Since, however, the record allows the use any kind of compression
functions, we do not preclude their possible inclusion in the future.

Finding: Bloom Filters may decrease space requirements but only marginally. Golomb
compression is already very effective at reducing space needs.
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6.3 How will CCSP perform if massive revocation happens?
Although most of the time revocations would come at a slow pace, there exist rare cases where
massive revocations will be initiated. Take for example the Heartbleed bug which forced a large
number of certificates to be revoked [11]. What would the performance of CCSP be? Would it
collapse? or would it be able to tolerate the blow? Would web servers (that use OCSP stapling) and
CDN networks (that serve CDN-based OCSP) create an unreasonable amount of traffic?

To drive our answers, we use real statistics from Heartbleed[11]. According to them, the largest
revocation burst following Heartbleed was from GlobaSign which revoked 56,353 certificates over
2 days, which amounts to just below 20 revocations per minute, or about 20 revocations per epoch,
since an epoch is about one-minute long. Let us now assume that each eon contains around 71
epochs (as estimated in Section 5) and that each epoch contains around 60 seconds; these revocations
will create 71 deltas with a total size of:

∑71
i=1 20 × i × 4 = 194 KBytes . Adding to this the traffic

needed to transfer one bitmap per eon (=1, 000, 000/8/1024 = 122 KBytes). Thus, the total traffic
that will be created is 194 + 122 = 316 KBytes over 71 epochs or 316 × 1024/71/60 = 0.074 Kbytes
per second. Thus, the amount of traffic due to revocation that needs to be transferred between a
CA and a CDN is in the range of 0.07 KBytes per second. However, for the ease of calculations,
in the above we considered a non-compressed bitmap (and deltas), which represents the worst
case scenario i.e., when about half of the certificates in the bitmap are revoked. Given the high
capacity networks that CDNs employ, it seems that this 0.07 KB per second, even in the worst case
scenario, is a tiny percentage they should not worry about. When considering only the transfer
of deltas (since the bitmap will be typically compressed to a significantly smaller size), only 0.04
KB per second needs to be transferred by CCSP for handling certificate revocation under such a
Heartbleed-like scenario.

Finding: Even during a new, Heartbleed bug the traffic generated due to CCSP-based
revocation information will be only around 0.04 KBytes per second.

7 IMPLEMENTATION
To assess the feasibility and effectiveness of CCSP, we implemented a preliminary prototype library
of our approach. In this CCSP prototype, we modified the existing TLS implementation of the
GnuTLS [32] library (handshake_server()) to enable a web server to distribute the most updated
CCSP’s Signed Collections and deltas. In addition to that, we created our own pair of private and
public keys and signed our own CCSP supporting certificate: a certificate which (by following the
design presented Section 4) contains information about the Signed Collection it belongs to, and its
index within that Signed Collection.

Then, we deployed an Apache web server configured with the mod_gnutls extension to load our
modified GnuTLS server side library. This server is responsible of running CCSP, thus providing
users with both (i) the certificate and (ii) the Signed Collection and deltas. By doing so our prototype
works as follows: initially, during the connection handshake, the server sends to the client the
eon and epoch identifiers of the current (latest) Signed Collection and delta. After that, the client
checks if it already posses any of them from previous connections (e.g., visited another website with
certificate in that Signed Collection) and responds to the server with what it needs. The possible
cases are: (i) the client needs both the latest Signed Collection and delta, (ii) it needs none, because
of a visit to a website belonging in this Signed Collection very recently, during the current epoch,
and (iii) it needs only the latest delta, because of a website visit some time in the recent past, during
the latest eon but not in the current epoch. After receiving the client’s response, the server responds
by sending the latest Signed Collection and/or delta.
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Fig. 4. High level overview of a TLS Handshake using our CCSP implementation. Marked with
red are the additional steps we integrated in GnuTLS, where the user retrieves the needed Signed
Collection and delta.

On the client side, we also modified the GnuTLS library (the functions:
_gnutls_x509_cert_verify_peers() and handshake_client()), to receive CCSP’s support-
ing certificates and CCSP revocation information (Signed Collection and delta) and check the
validity of the certificate based on that instead of the traditional OCSP responses. So, first the typical
certificate checks are performed (i.e., checking its expiration date, validity of signature, etc.), and
then the received Signed Collection and delta are passed to _gnutls_x509_cert_verify_peers().
In this function, we perform all the necessary processing for CCSP certificate validation, which
includes XORing the Signed Collection and the latests delta, and checking the specific revocation
bit of the bitmap that corresponds to the given certificate. If the revocation bit is “0” the client
proceeds with the connection, otherwise it terminates the connection as the certificate had been
revoked.
Figure 4 presents a high level overview of a TLS Handshake in the above CCSP stapling imple-

mentation. As can be seen, the TLS handshake begins after the establishment of a TCP connection
(step 1 ), with the client requesting an HTTPS session from the server (step 2 ). In this very first
request, the client piggybacks a header to declare to the server his interest in receiving the latest
Signed Collection and/or delta (step 2 ). After that, (step 3 ) the server will respond back with the
domain’s certificate, the Signed Collection (if the client requested for it) and the deltas since the
beginning of the eon. If the client receives a new Signed Collection, it will decompress and update
it with any received deltas (i.e. XOR SC with delta) before storing it locally (step 4 ). Finally, the



18 Pachilakis et al.

 0

 10

 20

 30

 40

 50

1 MByte 2 MBytes

T
L

S
 h

a
n

d
s
h

a
k
e

 l
a

te
n

c
y
 (

m
s
)

Size of page

OCSP
CCSP-eon

CCSP-delta

Fig. 5. Time it takes for OCSP and CCSP to complete a TLS handshake. CCSP-eon is 6 ms slower
than the OCSP Stapling and retrieves the entire signed collection once every eon. On the contrary,
the more frequently appeared CCSP-delta completes a TLS handshake 1 ms faster than OCSP Sta-
pling.

client is able to validate the received certificate (step 5 ) and either proceed with the symmetric
session key negotiation or terminate the TLS handshake (step 6 ).
Our prototype can be used by any browser capable of using the GnuTLS library, but for the

purpose of simplicity, in this work, we decided to load our library in the simple browser of GNU
wget [41] as a proof-of-concept. We decided to use GNU wget in order to avoid dealing with the
complexity and any other issues those browsers may possibly have, and any latencies and overhead
that is non related with our approach. For implementing and deploying our CCSP prototype we
only made a few modifications in the GnuTLS library, without the need to modify the browser
software or any other libraries, or any specialized infrastructure. Both the client and the server
components of our prototype are written in C, and our modifications took around a thousand lines
of code.

8 EVALUATION
In this section, we measure the performance of our prototype. We are particularly interested in
measuring the latency cost of our approach compared to the traditional state-of-the-art approach
of OCSP.

8.1 Experimental Environment
Our experimental infrastructure includes two different linux virtual machines: one in a datacenter
located in Frankfurt, Germany, and another in a datacenter located in Amsterdam, the Netherlands.
The hypervisors are running KVM, equipped with two Intel Xeon E5-2620 v3 CPUs, DDR4 1866
MHz ECC memory, and two 40 GbE network interfaces. The virtual machines have a single logical
core, 508 MB of RAM, and 20 GB of RAID-10 SSD storage. The two datacenters are connected with
a dedicated private fiber connection implemented using MPLS. There are seven IP routers between
the two VMs.

8.2 Performance Evaluation
To evaluate our prototype in terms of latency, we created two webpages of different sizes: (a) one
webpage of size 1 MByte and (b) one of size 2 MBytes. In order to compare our approach with the
state-of-the-art approaches, we fetch each webpage using both (i) OCSP stapling and (ii) CCSP.
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Fig. 6. TLS handshake latency constitutes a quite small part of the overall page load time.In case
of CCSP-delta (epoch) the total CCSP latency is slightly lower than the OCSP which have minimal
impact to the user experience. Even in case of CCSP-eon where the client downloads revocation
information for as many as 1M certificates, the imposed latency is utterly insignificant compared
to the overall page load time and is unable to affect the user experience.

To achieve that, we use the vanilla GnuTLS-loaded wget tool for the OCSP stapling case and wget
loaded with our modified GnuTLS version for the CCSP case.

In our first measurement, we measure the time it takes for each of the two approaches to perform
a TLS handshake. In CCSP we have two cases: (i) the beginning of each eon (CCSP-eon), where the
client retrieves the entire Signed Collection and (ii) the delta case (CCSP-delta), where the client
has only to download the deltas. In case of CCSP-delta the client needs to download only the most
current delta (current epoch) since it contains all the new revocation information since this time
inside the eon. We run each experiment 1000 times and in Figure 5, we report the median values. As
expected, TLS handshake does not depend on the webpage size. In addition, we see that CCSP-eon
completes a TLS handshake 6 ms slower than OCSP Stapling (solid black bar). That is expected
since the client retrieves the entire Signed Collection (1M certificates), which is much larger in size
than the stapled OCSP response of OCSP Stapling (4 KBytes vs 0.5 to 1 KByte). However, CCSP-eon
appears only once per eon; on the contrary, we see that the more frequently appeared CCSP-delta
(once per epoch) completes a TLS handshake 1 ms faster than OCSP Stapling.

In our next experiment we would like to see if the three different algorithms result in significant
changes in page load time. Similarly to the experiment before, we run each experiment 1000 times
and we report in Figure 6 the median values. We immediately notice that all three approaches have
almost the same performance which hovers around 130 to 140 ms. It seems TLS handshake time is
too small compared to the overall page download time, and thus, any differences in TLS handshake
latency between the three algorithms is hardly visible in the overall page load time.

8.3 Summary
To summarize and put our findings in perspective, Table 2 compares CCSP and the most widespread
previous approaches: CRL, OCSP, OCSP-CDN, and OCSP Stapling along four important dimensions:
(i) privacy, (ii) number of signatures required, (iii) latency, and (iv) freshness of information. We
see that CCSP (i) along with OCSP Stapling and CRLs protect user’s privacy, (ii) requires much
less signatures than all versions of OCSP, (iii) achieves low latency, and (iv) provides fresh (timely)
information. We see that along all dimensions (i.e., privacy, signatures, latency and freshness),
CCSP is comparable to or exceeds the best of the rest of the approaches. Indeed, no approach of the
mentioned above comes close to CCSP along all the dimensions studied.
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Method Privacy Low Number
of Signatures

Low
Latency

Freshness of
Information

CRLs [10] ✓ ✓ ≈ ≈

OCSP-CDN [2] ✗ ✗ ✓ ≈

OCSP [33] ✗ ✗ ✗ ✓
OCSP-Stapling ✓ ≈ ✓ ≈

CCSP ✓ ✓✓ ✓ ✓

Table 2. Comparison of certificate revocation approaches along four dimensions: (i) privacy, (ii)
low number of signatures, (iii) low latency, and (iv) freshness of information. We compare five dif-
ferent approaches CRLs, OCSP-CDN, OCSP, OCSP-stapling, and CCSP. When an approach scores
very well in a particular dimsension we give it a ✓. When it scores badly, we give it a ✗. When it
scores so and so, we give it a ≈. For example, we see that CRLs have good privacy and a low num-
ber of signatures, but are “so and so” in latency and freshness of information. On the other hand,
OCSP is very bad in privacy, latency, and number of signatures, but it provides fresh information.
CCSP seems to score very well in all dimensions: good privacy, low latency, very small number of
signatures, and very fresh information.

9 DISCUSSION
In this section, we discuss various aspects of our approach. We perform a head-to-head comparison
with the traditional OCSP in terms of performance, preservation of privacy, overhead for CAs, etc.
Among others, we discuss how CCSP handles (i) expired and (ii) corrupted certificates, and how
easy it is for CCSP to be adopted by contemporary web clients.

9.1 CCSP Vs. OCSP: Head-to-head
To avoid man-in-the-middle replay attacks, OCSP enriches each and every OCSP request with
a nonce and signs each and every reply including the nonce in the signature. However, this use of
nonces by OCSP has two major disadvantages:

• Loss of privacy: If web clients check each and every certificate with the OCSP server, then
OCSP servers can learn the browsing history of web clients.

• Low Performance: recent OCSP requests are served by CDNs (Content Delivery Networks)
in just a few tens of milliseconds (compared to hundreds of milliseconds that OCSP servers
need to reply). Unfortunately, requests that contain a nonce are treated by CDNs as cache
misses. This implies that they are not served by the fast CDNs but they are served by the
slower OCSP servers.

We believe that the introduction of timestamped Signed Collections can substitute the use of
nonces. That is, instead of requesting signed nonces, web clients may request timestamped Signed
Collections. Alternatively, one may see this as defining the nonce to be the current epoch number.
The introduction of timestamped Signed Collections in OCSP has several advantages:

• Preservation of Privacy: OCSP servers will know that web clients are interested in one of
the web sites of a Signed Collection but they will not know which one. If there is a large
number of web sites in a collection (one million or more) then the OCSP server can get
practically no information on what the users are interested in. 8

8Note that it is the existence of the Signed Collections that preserves privacy here. The larger the collection, the better the
privacy is preserved.
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• Fast Response: OCSP responses with timestamped Signed Collections can be served by
CDNs. Since they are already signed, they do not need to be forwarded to the OCSP server
and they can be treated as a cache hit by nearby CDNs.

• Lower number of signatures: Timestamped Signed Collections require one signature per one
million sites per epoch (assuming that each Signed Collection contains revocation information
for one million certificates). This can be one signature per minute (assuming that each epoch
lasts for one minute). On the contrary, nonces require one signature per web site per client
request - several orders of magnitude more signatures. In the case of OCSP Stapling, that’s
one signature for every website, for every epoch, which at the current epoch of one week is
tens of millions of signatures. Reducing the one week time frame to one minute, like CCSP,
will cause tens of millions of signatures per minute, making this technically impossible for a
CA to perform.

Therefore, the use of timestamped Signed Collections instead of nonces, can be used by OCSP to
(i) alleviate worries about the user’s privacy, (ii) improve performance via using CDNs, and (iii)
significantly reduce the number of signatures required.

9.2 Selective frequently timestamped OCSP responses
In Section 3.3, we discuss why the alternative approach of timestamping OCSP responses as frequent
as CCSP would impose a massive overhead on CAs. At this point, one might suggest to follow a
more selective approach and frequently timestamp responses for only a subset of web sites – the
ones with “strong security requirements”. However, again in order for this to have a computation
overhead (in terms of signature operations) comparable to that of CCSP, it would need to restrict
its application to about one millionth of all web sites and would leave the rest 99,9999% vulnerable
to attacks. And although one might argue that not all web sites might be a target for this attack and
thus, their users are safe from the attackers, the recent Mirai botnet and the Wannacry malware
attacks proved that attackers would compromise anything that can be compromised. Thus, no
vulnerable target can be considered “safe”. And to make matters worse, in case of a compromised
web hosting service, then hundreds of thousands of web sites would be at risk as their private keys
could be leaked.

9.3 CCSP and Certificate Revocation Lists
We believe that CCSP can significantly improve the performance of more traditional approaches,
such as Certificate Revocation Lists (CRLs). CCSP has demonstrated that revocation information
for as many as 1M web sites can fit in as little as 10 KBytes of space. This can mean a breakthrough
for CAs that use CRLs. Indeed, Signed Collections imply that CAs now may send information about
all their certificates (not just the revoked ones) in just a few KBytes of space. If combined with
deltas the space requirements will be reduced to less than 1 KByte. Thus, instead of needing tens or
hundreds of KBytes, CRLs (with appropriate compression) may now be transferred in less than 1
KByte - one to two orders of magnitude space improvement. Another benefit of CCSP that comes
with its size reduction is freshness. If users have to download smaller files, it means that these
files can be downloaded more frequently, and if they also contain information about non-revoked
certificates, it means that they have to be downloaded less times. This is one of the reasons that
CCSP focuses on freshness with epochs and eons.

9.4 Handling expired certificates
It could be argued that a Signed Collection may eventually contain non-useful/redundant informa-
tion since all the issued certificates expire after a specific period of time. Indeed, this would be the
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case if the Certificate Authorities do not take into account the certificates’ expiration date during
the construction of Signed Collections and assign certificates to Signed Collections at random (i.e.,
include in the same Signed Collection certificates with very large variance in expiration dates).
When considering that the certificate validity check should fail when a certificate under validation
is found to be expired, without even the need to further check for its revocation status, these expired
certificates could consume some space in the Signed Collection.

However, as the expiration dates of certificates are not specified arbitrarily (a certificate can only
be valid for the exact period of three months, one or two years), CAs construct Signed Collections
that contain certificates expiring approximately at the same period. Furthermore, even if the Signed
Collections are not constructed properly, the waste of space is minimal after considering the
compression of Signed Collections. Even better, since we do not need revocation information for these
expired certificates, the revocation bits that correspond to these certificates can be set to the values that
maximize the effect of compression!. For example, if the revocation bit of an expired certificate is
neighbouring to a sequence of bits that correspond to already revoked certificates, the compression
will be more effective if this bit is also assigned to 1, which is permitted since the certificate is
expired and this operation will not interfere with the validity check.

9.5 How about corrupted CAs?
Recent incidents [7] suggest that there may exist corrupted CAs. These CAs may issue fake
new certificates and/or may “un-revoke” several revoked certificates. Unfortunately, this is true:
rogue CAs may significantly compromise any communication that uses their “signed” certificates.
Although an important problem, dealing with corrupted CAs is outside the scope of this paper.
Fortunately, there have been several approaches (as described in section 2) that deal with corrupted
CAs.

9.6 Why should the client care for 1 million certificates?
In this paper, we present an approach on how to deal with millions of certificates. However, the vast
majority of the clients may access only a few dozen of websites and thus care about the freshness of
those certificates only. As a result, one might feel that the proposed approach may add unnecessary
overhead. Fortunately, CCSP has the same overhead independent of whether the client accesses
one hundred or one million sites. This is because with the use of (i) compression and (ii) deltas we
managed to reduce the transferred information to just a few KBytes. Consequently, any further
reductions may provide no really visible improvements.

9.7 Adoptability of the proposed approach
It is apparent that similar to any other certificate verification checking approach, CCSP, also requires
modifications in the existing infrastructure. More specifically:

• Traditional OCSP requires modifications on the browser and the CA: the browser needs a
module to perform OCSP queries and CAs need to maintain stand-alone OCSP responders to
provide timely revocation information.

• Traditional CRL lists also require modifications on the browser and the CA: the browser
needs a module to fetch, store and search large CRL lists and CAs need to maintain servers
where CRLs are publicly accessible.

• OCSP Stapling requires modifications on the browser and lots of modifications on the website
side: the web server has to periodically poll OCSP server for revocation status of its own
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certificate(s), and send OCSP response along with the certificate to the browser during TLS
handshake.

• CRLSet (or OneCRL) requires heavy modifications on the browser: the vendor needs
to regularly crawl CRLs from the major CAs around the world and compose its own
comprehensive list. Contrary to traditional CRL, this list does not include of end-server leaf
certificates but only high value intermediate CA certificates.

Similar to CRLs, in CCSP, the browser needs to fetch, store, and maintain a small list of bits (the
Signed Collection), when CAs need to compose and distribute these lists of bits. Considering the
minimal amount of changes required compared to the CRL approach, and the increased necessity
for a reliable certificate verification checking method [39], we believe that browsers and CAs will
be highly motivated to adopt the principles of CCSP. CCSP has been designed by always keeping
in mind that changes to existing software should be kept to a minimum. That said, it only requires
some changes in the user agents, such as the browsers, and not in the server-side, as a simple static
file web server can work just fine.

10 CONCLUSION
In this paper we introduced a new approach for certificate revocation checking: CCSP. Based on the
newly-introduced abstraction of signed collections, CCSP is able to resist man-in-the-middle attacks
with much better performance than previously-proposed approaches. Indeed, by using bitmaps and
aggressive time- and space-based compression, CCSP is able to pack revocation information about
one million certificates in less than 10 KBytes. CCSP significantly reduces the number of signature
operations needed by OCSP servers and CAs - by as much as six orders of magnitude in some cases.

We implemented our approach with around a thousand lines of code inside the popular GnuTLS
library and performance results suggest that CCSP adds only a few milliseconds of overhead in the
overall user latency compared to the state-of-the-art alternative, OCSP stapling. We believe that
with the increasing percentage of encrypted Internet Traffic, and the widespread awareness about
certificate validity, the benefits of our approach are bound to increase in the future.
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