
Carnus: Exploring the Privacy Threats of Browser
Extension Fingerprinting

Soroush Karami, Panagiotis Ilia, Konstantinos Solomos, Jason Polakis
University of Illinois at Chicago, USA

{skaram5, pilia, ksolom6, polakis}@uic.edu

Abstract—With users becoming increasingly privacy-aware
and browser vendors incorporating anti-tracking mechanisms,
browser fingerprinting has garnered significant attention. Accord-
ingly, prior work has proposed techniques for identifying browser
extensions and using them as part of a device’s fingerprint.
While previous studies have demonstrated how extensions can
be detected through their web accessible resources, there exists
a significant gap regarding techniques that indirectly detect
extensions through behavioral artifacts. In fact, no prior study
has demonstrated that this can be done in an automated fashion.
In this paper, we bridge this gap by presenting the first fully
automated creation and detection of behavior-based extension
fingerprints. We also introduce two novel fingerprinting tech-
niques that monitor extensions’ communication patterns, namely
outgoing HTTP requests and intra-browser message exchanges.
These techniques comprise the core of Carnus, a modular system
for the static and dynamic analysis of extensions, which we
use to create the largest set of extension fingerprints to date.
We leverage our dataset of 29,428 detectable extensions to
conduct a comprehensive investigation of extension fingerprinting
in realistic settings and demonstrate the practicality of our attack.
Our in-depth analysis confirms the robustness of our techniques,
as 83.6% - 87.92% of our behavior-based fingerprints remain
effective against a state-of-the-art countermeasure.

Subsequently, we aim to explore the true extent of the privacy
threat that extension fingerprinting poses to users, and present
a novel study on the feasibility of inference attacks that reveal
private and sensitive user information based on the functionality
and nature of their extensions. We first collect over 1.44 million
public user reviews of our detectable extensions, which provide
a unique macroscopic view of the browser extension ecosystem
and enable a more precise evaluation of the discriminatory power
of extensions as well as a new deanonymization vector. We
also automatically categorize extensions based on the developers’
descriptions and identify those that can lead to the inference of
personal data (religion, medical issues, etc.). Overall, our research
sheds light on previously unexplored dimensions of the privacy
threats of extension fingerprinting and highlights the need for
more effective countermeasures that can prevent our attacks.

I. INTRODUCTION

As Internet connectivity continues to proliferate globally,
reaching almost ubiquitous presence in many countries, a large
fraction of our everyday activities have migrated to the web.
While mobile apps generate a significant amount of traffic,

browsers still mediate a large portion of our online activities.
As a result, the evolution of websites from static resources
to functionality-rich applications has also necessitated the
evolution of browsers into complex platforms with a rich set of
APIs and features. To improve user experience, browsers allow
users to further personalize them and extend their functionality
by installing extensions.

Apart from the obvious benefits for users [26], [38], [48],
extensions also introduce a privacy risk. Due to the potential
risk, browsers do not provide any mechanism that would allow
a visited webpage to directly obtain the list of installed browser
extensions. In practice, however, webpages can indirectly infer
which extensions are installed [24], [44], [46], [47]. Once the
list of installed extensions is obtained, it can be used as part of
a user’s device fingerprint and coupled with other browser [18],
[33], [40] or system level [13] information, which can lead
to the tracking of users across the web [8], [19]. Extensions
may also directly leak sensitive information like visited pages
and form data to third parties [51]. While Firefox and Safari
have tried to prevent certain extension enumeration techniques,
Chrome –the most popular browser with a market share of
∼64% [53]– remains vulnerable.

In this paper, our motivation is twofold: to conduct a com-
prehensive exploration of automated extension enumeration
techniques under realistic settings, and to understand the true
extent of the privacy threat that extension fingerprinting poses
to users (apart from facilitating browser fingerprinting and web
tracking). To that end we build Carnus, a modular system
that analyzes Chrome extensions statically and dynamically for
creating fingerprinting signatures and inferring sensitive data.
Our system employs four different techniques for detecting
extensions; first, it leverages the straightforward technique
of identifying extensions that expose unique web-accessible
resources (WARs), which has been demonstrated in prior stud-
ies [24], [47] at a smaller scale. Next, we focus on the identifi-
cation of extensions through the detection of unique behavior-
based modifications to a page’s DOM. While this approach
has been proposed as a potential fingerprinting technique [52],
no prior work exists on the automatic generation of behavioral
fingerprints. Here we tackle this challenging task, detail our
technical approach, and demonstrate our system’s effectiveness
at automatically creating and detecting fingerprints at scale.

We also introduce two new techniques for inferring the
presence of extensions based on intra-browser and exter-
nal communication. Specifically, we find that certain exten-
sions broadcast messages for communicating with components
within the page (e.g., injected JavaScript), which we use to
build fingerprints. Similarly, extensions can also send HTTP

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.24383
www.ndss-symposium.org

requests to external servers to fetch resources. We conduct a
crawl of the Chrome Web Store and are able to fingerprint
29,428 extensions using all these techniques, resulting in the
largest and most complete fingerprinting study to date. To
demonstrate the robustness of our techniques we evaluate the
impact of a recently presented state-of-the-art countermea-
sure [55] and find that our system can still fingerprint 83.6%
- 87.92% of the behavior-based extensions.

Subsequently we measure the tracking capability enabled
by extension fingerprints. While prior work has conducted user
studies on a smaller scale and using smaller sets of finger-
printable extensions [24], [52], our goal is to accurately gauge
the usefulness of extension fingerprints under more realistic
settings in terms of scale. Given the significant challenge of
conducting very large user studies with actual participants, we
identify an alternative data source that offers a unique view
into the set of extensions that users install, thus enabling such
an analysis. Specifically, we collect over 1.44 million publicly
available reviews for the extensions that are fingerprintable
by Carnus. Using this dataset we conduct an analysis of the
unicity of installed browser extensions for over 1.16 million
users, and explore the feasibility of a novel deanonymization
attack. Our results show that extensions installed by users
can be highly identifying; for instance, if an attacker detects
4 random extensions that are fingerprintable by our system,
there is a 94.47% chance that she can uniquely identify the
user and learn their name and profile picture. While this
deanonymization attack is not applicable to all users, since
not everyone writes reviews, it reveals a significant privacy risk
that stems from a seemingly innocuous action, i.e., writing a
review about a browser extension.

Finally, we investigate the feasibility of attacks that infer
user information based on the intended functionality of the
discovered extensions. While not all extensions reveal sen-
sitive information about the user (e.g., an ad-blocker), other
extensions can explicitly or implicitly disclose information that
is personal (e.g., ethnicity) or sensitive (e.g., religion). Our
analysis shows that at least 18,286 of the extensions reveal
such information. When considering the most sensitive types of
information, we find that 147, 116, and 387 extensions expose
the user’s medical/health conditions, religion and political
inclinations, respectively. Also, we find that the extensions
that expose such sensitive information have been downloaded
almost 2.5 million times. These findings highlight the privacy
risk of users installing browser extensions, as websites and
third-party services can surreptitiously infer personal and sen-
sitive information. In summary, our research contributions are:

• We develop Carnus, a system that combines dynamic
and static techniques for automatically analyzing ex-
tensions, and demonstrate the first automated creation
and detection of behavior-based fingerprints. We pro-
vide a detailed technical description of our novel
framework, which fully automates the entire finger-
printing process, and demonstrate the practicality of
our attack.

• We introduce two new fingerprinting techniques that
rely on extensions’ communication patterns and are
robust against all countermeasures previously pro-
posed by researchers or deployed by browsers.

• We present the largest extension fingerprinting study
to date, highlighting the true extent of fingerprintable
extensions within the Chrome Store. Our dataset also
enables an evaluation of our attacks against a state-of-
the-art countermeasure [55], demonstrating the effec-
tiveness of our techniques as Carnus can still detect
the vast majority of the behavior-based extensions.

• We present an analysis on the unicity of extensions
using publicly available extension reviews as the van-
tage point for quantifying the uniqueness of extensions
among more than 1.16 million users. Apart from mea-
suring the true usefulness of extension fingerprints for
tracking users, we explore a novel deanonymization
attack where users’ identities are inferred based on
their public reviews.

• We present the first empirical analysis on the pri-
vacy inference attacks enabled by browser extensions.
Specifically, we describe an attack for inferring users’
personal and sensitive information (e.g., demograph-
ics, ethnicity, religion, etc.) based on the intended
functionality of detected extensions.

II. BACKGROUND AND THREAT MODEL

Extension fingerprinting. While modern browsers offer a
rich set of capabilities and functionality, third-party developers
are allowed to create extensions that add new features and en-
able a better experience for users. For instance, popular exten-
sions can remove undesired content like advertisements [21],
[39] but can also harden browsers by removing undesired
features [48] or forcing web requests over HTTPS [27], [45].
To achieve their desired functionality, extensions can alter a
webpage’s DOM and even execute arbitrary scripts in the
context of a webpage (which introduces a significant security
threat [10], [12], [15], [28], [36]). However, unlike plugins,
browsers do not provide a JavaScript call for a webpage to
obtain a list of the extensions installed in a user’s browser.

As a result, extensions can only be detected by pages
indirectly. While we present details on how Carnus achieves
this in Section III, the main idea is that extensions expose
elements (e.g., an icon) or exhibit behavior that is observable
by webpages. If a specific extension’s elements or behavior
are unique among all extensions, then a page can uniquely
identify (i.e., fingerprint) it. Identifying exposed resources in
Chrome is a straightforward process that has been demon-
strated before [24], [47]. On the other hand, uniquely identi-
fying extensions based on their behavior is a challenging task
that presents several obstacles in practice. First, extensions can
exhibit behavior that is dynamic and potentially ephemeral in
nature that also relies on characteristics of the visited website,
as opposed to the typically static and long-lasting nature of
exposed resources. Moreover, multiple extensions may exhibit
similar or identical behavior (e.g., blocking ads on a page). To
make matters worse, if a user has multiple extensions installed
their behavior may overlap, further obscuring the “signals”
used for fingerprinting. While prior work [52] proposed the
use of behavioral features for fingerprinting extensions, that
study did not actually automatically create or evaluate such
fingerprints, nor did it explore the implications of overlapping
behaviors from different extensions. In this study we provide

2

a comprehensive analysis of extension fingerprinting that ex-
plores these challenging, yet critical, practical dimensions.

Threat model. In practice, extension fingerprinting tech-
niques can be deployed in different settings, which can affect
their accuracy; for instance, certain extensions can only be
detected by certain web pages as their functionality gets
“triggered” only when the user visits specific domains [52].
Since such extensions cannot be detected by all attackers, we
focus on extensions that can be detected regardless of the
web page’s domain. More specifically, we assume that the
attacker is able to lure the user to a specially crafted page that
attempts to detect as many installed extensions as possible.
Furthermore, as in previous studies, we assume that the user
visits the attacker’s website over Chrome on a computer and
not a smartphone, since the mobile version of Chrome does
not support extensions.

III. SYSTEM DESIGN AND IMPLEMENTATION

In this section we provide details on the design and imple-
mentation of our system. A high-level overview of Carnus is
shown in Figure 1. The first module of our system is respon-
sible for crawling the Chrome Web Store and downloading
all available extensions. The crawler also extracts metadata
including the descriptions provided by the developers, as well
as all accompanying reviews by users. The extensions are
processed by both static and dynamic analysis components
which identify their WARs and exercise them to extract their
behavioral signatures. These are subsequently processed so the
final fingerprint is created for each extension. For our pri-
vacy inference attacks, we focus on fingerprintable extensions.
Indeed, their descriptions, metadata, and users’ reviews are
processed so as to identify extensions of interest and create
the list of user characteristics and traits that they reveal.

Extension enumeration. As mentioned previously, prior
studies have demonstrated the feasibility of browser extension
enumeration and fingerprintability. These studies focused their
efforts on identifying extensions that expose specific resources
(i.e., WAR-based enumeration) either directly [24], [47] or
with clever implicit approaches [44], [46]. In the following
subsections we provide technical details and outline the finger-
print generation and extension detection process for our four
techniques. Overall, we present the first study that incorporates
multiple fingerprinting techniques, enabling the largest and
most comprehensive exploration to date.

A. WAR-Based Extension Enumeration

An extension’s structure and required permissions are de-
fined in a manifest file. In practice, the permissions declare
the extension’s ability to access websites and Chrome APIs,
and the content scripts point to code that will be fetched
and executed in the context of web pages. Resources such
as images, JavaScript and CSS files are packed along with
extensions. Relevant to our goal are web accessible resources
(WAR). The WAR section of the manifest defines a list of
resources within an extension that can be accessed from a
web page. In other words, a page is only able to access re-
sources whose paths exist in the WAR section [2]. In Chrome,
a page can fetch a resource from an extension through:
chrome-extension://<UUID>/<path>, where <UUID> is the
public extension ID, and <path> is the path to the resource.

By compiling a list of the extensions that expose such re-
sources, a website can probe these resources in order to detect
which extensions the user has installed in her browser. Since
this attack is only feasible when the extensions’ identifiers
and resource paths are known, Firefox recently implemented
a countermeasure of assigning a random identifier to each in-
stalled extension. However, Chrome lacks any countermeasures
for preventing WAR-based extension enumeration.

As our goal is to maximize the potential coverage of our
attack and explore in depth the privacy implications that arise
from the detection of extensions, we implement the WAR-
based technique as part of our system. During the preparatory
phase, we statically parse the manifest files of the extensions
collected by our crawler and identify which ones expose such
resources. During the attack phase, a script in our page issues
a request for each extension’s WAR and determines if the
extension is installed based on the status code of the response.

B. Behavior-Based Extension Enumeration

During an initial exploration of the web extension ecosys-
tem, we encountered various extensions that exhibit patterns of
potentially detectable behavior. Specifically, we found exten-
sions that dynamically add new images, buttons, or text to the
web page, some that detect images and text and replace them,
as well as extensions that fetch resources from the web and use
message passing for communicating with the JavaScript code
inside the visited page. By detecting all the behavioral patterns,
a website can generate behavior-based signatures that allow
identification of the user’s installed extensions. In the following
we focus on detecting the extensions that alter the DOM tree
of the visited web page, while in subsections III-C and III-D
we present our new techniques for capturing extensions’ intra-
and inter-communication patterns.

DOM modification. In general, the types of modifications
that are performed by extensions can be attributed to the
following behaviors: (i) adding new nodes in the DOM tree
of the page, (ii) removing nodes from the DOM tree and (iii)
changing the attributes of existing nodes. A special case of the
latter category is the case of extensions that identify specific
keywords in the text of the page and replace them with other
predefined keywords.

To capture the modifications performed by each extension
and generate their behavioral fingerprints, we follow a dynamic
analysis process where we aim to “trigger” extensions and
elicit their functionality. To that end, Carnus incorporates a
precisely crafted website under our control (i.e., a honeysite
with honeypages). Specifically, for each extension we launch
a new instance of the Chrome browser with only this extension
installed and visit our honeysite three times. During these
visits we detect the extension’s modifications by comparing the
content rendered in the browser with the honeysite’s original
contents and generate the extension’s behavioral fingerprints.
Our system visits the honeysite three times during the fin-
gerprint generation process, as our empirical analysis showed
that this provides a good balance between eliciting different
behaviors by the extensions and not significantly increasing
the duration of the dynamic analysis.

Since the honeysite is controlled by us (or in the case of an
actual attack by the attacker), all the modifications that occur

3

Fig. 1: Overview of Carnus’ two main workflows. The extension enumeration phase analyzes extensions and creates signatures
that enable fingerprinting browser extensions. The privacy inference phase analyzes extensions and their respective reviews and
identifies extensions that implicitly reveal sensitive or personal information about the users.

in the page during the attack phase are the result of the user’s
installed extensions and not some other external factor, thus,
allowing the attacker to isolate precisely the changes performed
by extensions. When a user visits our website (i.e., during
the extension detection phase), Carnus captures the contents
of the website, detects the modifications performed by their
installed extensions, and constructs signatures that describe
these modifications. Finally, for identifying the user’s installed
extensions, Carnus matches the visiting user’s signatures with
the fingerprints that we have previously stored in our database.

Design of honeysite. As the goal is to trigger as many exten-
sions as possible into performing some form of modification,
and generate their fingerprint, our honeysite includes highly-
diverse content. The main challenge we attempt to tackle is
that extensions may exhibit detectable behavior only when
specific conditions are met. For example, the popular password
manager LastPass inserts an icon in form fields, but may not
interfere with any other objects in the page. If the honeysite
does not have such a field, LastPass will not insert the specific
icon in the page, hence, Carnus will not be able to detect it. To
avoid such cases, our honeysite includes all available HTML
tags, types, various attributes, ad-fetching scripts (that do not
actually fetch any ads) and media resources of various types.

Since the space of all potential extension triggers is vast,
including all available HTML tags in the honeysite cannot
definitely offer the coverage we aim to obtain, as our system
will not be able to detect extensions that are only triggered by
specific keywords being present in the page’s text. As such,
our system tries to identify keywords that need to be included
in our honeysite through the following process: we visit each
extension’s page in the Chrome Web Store twice, once with the
respective extension installed and once without, and compare
the text of the extension’s description across the two visits.1

The observation behind this is that, specific keywords that
activate such behavior are typically included in the extension’s

1Descriptions can be found at https://chrome.google.com/webstore/detail/UUID

description. Any keywords that are detected when visiting the
description page are included in our honeysite. While this
is a fairly straightforward approach, it has not been used in
prior extension fingerprinting studies and actually enables the
detection of 7.6% of all the extensions that we detect through
honeypage modifications (22.1% of these also reveal sensitive
information in our inference study).

Fingerprint generation. This methodology is followed for
the generation of the extensions’ behavioral fingerprints that
are stored in our database, as well as the signature of the mod-
ifications that are performed when the user visits the attacker’s
website. In both cases, Carnus treats all the observed modifi-
cations as a sequence of additions and removals (replacement
or modification of an existing element can be considered as
a removal of that element and addition of a new one). We
construct the signature by considering all added and removed
terms. That is, a signature consists of two distinct parts: (i) the
set of additions and (ii) the set of removals. For instance, in the
case of an extension that injects a new image in the web page
(i.e.,), the signature will be generated
as the following sets [{"<img", "src='image.png'>"},{}]
that represent the added and removed terms, with the latter
one being an empty set in this case. Similarly, for an extension
that replaces image-1 with image-2, the signature will be
[{"src='image-2.png'>"}, {"src='image-1.png'>"}].

At a high level, after identifying the modifications of all
extensions and generating their fingerprints, we can enumerate
the extensions of a user by matching the observed modifi-
cations’ signatures with the extensions’ fingerprints that we
already have in our database. That is, when a user visits our
website, we have embedded JavaScript code that identifies
the modifications during that visit, calculates the signatures
of these modifications on-the-fly, and compares them with the
fingerprints we have previously generated for all extensions.

However, in practice, there are two important challenges
that can significantly affect the behavior-based detection of
extensions and lead to false positives or negatives. First, exten-

4

sions can exhibit different behaviors across different executions
or inject content that contains dynamic parts. Second, multiple
extensions may perform similar modifications on the website’s
DOM tree, which can affect the accuracy of our system. Next,
we describe the process we have established for solving these
issues and making Carnus more robust.

Dynamic content. As mentioned before, during the fin-
gerprint generation phase we visit the honeysite three times.
This allows us to differentiate between extensions that always
perform the same modifications and those that exhibit different
but likely similar behaviors. If these visits generate different
behavioral fingerprints, we keep them all in our database
as the extension’s fingerprints. We estimate how similar or
different these fingerprints are and detect whether some parts
of them include dynamic content. An example of fingerprints
that change with every execution is given by the following:

[{"<img","src='img.png'>","timestamp=100"},{}]
[{"<img","src='img.png'>","timestamp=200"},{}]
[{"<img","src='img.png'>","timestamp=300"},{}]

In the case where the extension injects dynamic content,
the user’s signature will never directly match the extension’s
fingerprint that we have already generated and stored. To
handle such cases, during the fingerprint generation phase
Carnus tries to identify the static and dynamic parts of highly
similar fingerprints (i.e., that have all but one terms identical,
and a single term partially matching) and re-writes them so
that the dynamic part of the partially matching term is not
included in the fingerprint. In the above example, Carnus will
include the matching part (i.e., “timestamp=”), but it will
omit the value that follows the “=” sign.

The approach we described above for the detection and
omission of fingerprints’ dynamic values is a bit conservative,
as it only considers the case of almost identical fingerprints
that have all their components matching or partially matching.
Since this approach cannot detect all cases of fingerprints with
dynamic parts, we also allow a certain number of components
to mismatch when comparing the fingerprints in the database
with the visiting user’s signature. The number of allowed mis-
matches is determined according to the size of the fingerprints
(i.e., number of terms in the sets of additions and removals).
Since smaller fingerprints tend to be more specific and also
have a higher risk of a false positive matching, we enforce
a strict policy of no mismatches allowed for fingerprints that
have a size of up to 10 (covering almost 55% of our extensions
as shown in Figure 4). For larger fingerprints, with a size of
10 to 50, which covers an additional ∼26% of the extensions,
Carnus is more lax and allows mismatches of up to 10% of the
fingerprint’s size. For the final ∼20% of even larger fingerprints
we allow mismatches of up to 5% of the fingerprint’s size.

Fingerprints overlap. When comparing the extensions’
fingerprints that are stored in our database with the visiting
user’s signature, we essentially compare the two sets of added
and removed terms of every stored extension’s fingerprint with
the respective sets of added and removed terms in the user’s
signature. To have a match both sets of a fingerprint need to
match those of the user’s or a subset of them (i.e., the user
has multiple extensions installed and her signature consists of
the modifications performed by all of them). However, since
there are extensions that perform similar modifications, it’s

possible to end up with overlapping fingerprints. In such cases,
the fingerprint of an extension appears to be the same or part
of another extension’s fingerprint. As this can result in false
positives (all overlapping fingerprints will match the user’s
signature), after detecting all the matching fingerprints, we try
to identify and resolve such cases.

In the case where two identical fingerprints match the
user’s signature, our system cannot determine which one of the
extensions the user has installed. Therefore, we consider both
of the extensions unless one of them can be matched by another
technique of our system (i.e., WAR-based or communication-
based). When one of the matched fingerprints appears to be a
subset of another matched fingerprint, Carnus keeps the one
that has the highest number of terms matching the signature.

C. Intra-communication Based Enumeration

For security reasons, browsers separate the execution con-
text of extensions’ background scripts, content scripts, and the
page’s scripts. These scripts run in isolated worlds, preventing
one from accessing variables and functions of the others [1].
However, they can communicate by exchanging messages [3].
Content scripts can communicate with background scripts by
using the runtime.sendMessage API. Background scripts
can use the tabs.sendMessage API to communicate with
content scripts. The messages exchanged between the exten-
sions’ background and content scripts are invisible to the page.

Furthermore, communication between an extension and a
web page can be achieved in two ways: the page’s scripts
can exchange messages with (i) the extension’s background
scripts and (ii) content scripts. For the first approach, a page
can use the runtime.sendMessage API to send messages
to the extension’s background, and the extension in turn
uses the runtime.onMessageExternal.addListener API
to receive these messages and send responses back to the
page. However, this communication is only possible when
the extension adds an externally_connectable key in its
manifest file, specifying the URL patterns of websites that
the extension wants to communicate with. The URL pattern
must contain at least a second-level domain, and wildcard style
patterns like “*” or “*.com” are prohibited. This is to prevent
arbitrary websites from communicating with the extension.

For communication between an extension’s content script
and a web page, the postMessage API can be used (and the
externally_connectable key is not required). As a result
any arbitrary web page can exchange messages with the exten-
sion. In this section, we leverage this kind of message-passing
to create a new extension fingerprinting vector. Differences in
the messages sent by extensions allow Carnus to distinguish
between different extensions that employ message passing for
intra-communication purposes. For instance, Listing 1 shows
parts of the content script of the “MeetMe Dolby Voice 1.1”
extension (UUID: lflnplggpolkcgknahacafilopgngelc),
which sends two messages to the web page.

Fingerprint generation. The approach that we follow for
capturing such messages is similar to the one we implemented
for detecting DOM modifications and generating behavioral
fingerprints. We include a JavaScript EventListener in our
honeysite to capture and log all message events. Again, we
visit the honeysite three times for each extension to identify

5

function logToJavascriptPlugin (msg) {
window.postMessage({MeetMeDolbyVoiceMsgP1x1:

'log_msg', raw_value:{component:'ChromeExt-FG',
message: msg}},'*');

}
...
logToJavascriptPlugin('Sending \'ping\' message to

transport layer');
window.postMessage({MeetMeDolbyVoiceMsgP1x1:'ping'},

'*');

Listing 1: Code snippets of an extension that sends two
messages to the web page.

[{"MeetMeDolbyVoiceMsgP1x1":"log_msg", "raw_value":{
"component":"ChromeExt-FG", "message":"Sending '
ping' message to transport layer"}},

{"MeetMeDolbyVoiceMsgP1x1":"ping"}]

Listing 2: Example of an intra-communication fingerprint.

whether it always sends the same messages and if they contain
any dynamic values. After removing the dynamic parts, the set
of exchanged messages is used for generating the extension’s
fingerprint. Listing 2 shows the fingerprint that is generated for
the aforementioned extension (that was presented in Listing 1).

Extension enumeration. During the attack phase, when a
user visits our website, our system captures all the messages
sent by the installed extensions and matches them with the
message-based fingerprints that we created during the mes-
sage capturing phase. To capture the exchanged messages,
as described above, we include an EventListener in our
website and log all received messages. After constructing
the user’s message-based signature, Carnus checks which of
the extensions’ fingerprints are a subset of it, indicating that
those extensions are installed in the user’s browser. For this
enumeration technique, 20% mismatches are allowed. Finally,
from the list of detected extensions with this approach, we
remove extensions if their fingerprint is a subset of a fingerprint
of another detected extension.

D. Inter-communication Based Enumeration

Extensions can issue HTTP requests for fetching resources
(i.e., css files, scripts, images, etc.) from the Internet. For in-
stance, the HTTP requests that are issued by the “source now”
extension (UUID: dimnlaemmkbhojonandnnbogfifjnpno)
are shown in Listing 3. Carnus incorporates a novel extension-
detection module that relies on monitoring all the HTTP
requests issued by extensions for fetching resources.

For detecting HTTP requests issued by the user’s installed
extensions, we use the Resource Timing API [57], which stores
performance metrics regarding the performance and execution
of web applications and is accessible through JavaScript. Us-
ing the performance.getEntriesByType("resource")
method we can query the list of all resources requested. As a
result, we obtain all resources requested by the web page and
content scripts of extensions installed in the user’s browser.2
Such requests can exhibit unique features, thus rendering them
a useful signal for enumerating installed extensions.

2Resources requested by extensions’ background pages are not included.

[{"https://b.alicdn.com/@sc/list-buyer/assets/source
-now/entry/index.js"},

{"https://b.alicdn.com/@sc/list-buyer/lib/js/jquery.
js"}]

Listing 3: Example of an inter-communication fingerprint.

Fingerprint generation. As before, we visit our specially
crafted honeysite and detect and record the URLs of all
requested resources. Since, in practice, the attacker creates and
controls the honeysite, it is trivial to detect any issued requests
that are not part of the page but originate from extensions.
During our dynamic analysis we visit our honeysite three times
to detect whether an extension always fetches the same or
different resources, and accordingly generate the extension’s
fingerprint based on the set of these URLs.

Extension enumeration. When a user visits our website,
we capture all the outgoing HTTP requests in the same fashion
and determine which requests appear due to the installed
extensions. Thus, we generate the signature of the visiting user
as the set of these requests, and try to match the extensions’ fin-
gerprints that we created previously with the user’s signature.
As with the intra-communication technique, we allow 20%
mismatches and remove any detected extensions that have a
fingerprint that is a subset of another detected extension.

Overall, we follow different mismatch thresholds for
the DOM-based and communication-based fingerprints. Since
some DOM-based modifications are common across different
extensions, and the extensions’ behavior and fingerprint size
vary significantly, we found that an adaptive approach based on
the fingerprint size is more effective. For communication-based
fingerprints, which are significantly smaller than the DOM-
based ones, as well as more unique and robust, we empirically
found that a lax heuristic of allowing 20% mismatches yields
better results.

E. Behavior-based Fingerprinting: Current State of Affairs

Prior work. Starov and Nikiforakis [52] proposed the
method of detecting DOM-based modifications for fingerprint-
ing the user’s installed extensions and presented XHound, a
tool for identifying if an extension is detectable based on the
modifications it performs on the page’s DOM. A followup
study by Trickel et al. [55] also leveraged some functionality
of XHound. While these two studies refer to behavior-based
fingerprinting, they did not actually create any behavior-based
fingerprints automatically or provide technical details on how
these fingerprints can actually be created. In more detail, when
discussing their implementation of checks (that compare DOM
changes to signatures) for detecting extensions, the authors of
XHound explicitly state that “these checks could, in principle,
be automatically generated by parsing XHound’s output but we
leave this automation for future work” [52]. In [55] the authors
manually created behavior-based fingerprints for 20 extensions
to evaluate their proposed countermeasure, and stated that
behavior-based fingerprinting “does not currently scale” and
that fingerprint creation “requires human intelligence and no
recent research has shown how to automatically generate”.

While XHound’s proposal of using DOM-based changes
for fingerprinting is a major contribution, it is important to

6

1.[{style="display:','none;"','id="hashmenu01"'},{}]

2.[{'class="rmcScreenshotInstalled"'},{}]

Listing 4: Example of behavioral fingerprints that are not
effective against the countermeasures of CloakX.

1. [{'src="//buy.dayanghang.net/inject/common.js"'},
{}]

2. [{'action="/cconcert-login"','style=""'},{'action
="/cpanel-login"'}]

3. [{'value="mata-inactive-38.png"','id="mata-icon-
name"','type="hidden"'},{}]

//This fingerprint will be rewritten to [{'value="
mata-inactive-38.png"', 'type="hidden"'},{}]

4. [{'type="text/javascript"','src="chrome-extension
://nogempgplicnckhcmgjjjgflmipmbgaf/variables-
sharing.js"'},{}]

//This fingerprint will be rewritten to [{'type="
text/javascript"','src="chrome-extension://
nogempgplicnckhcmgjjjgflmipmbgaf/"'},{}]

Listing 5: Example of behavioral fingerprints that remain
effective even after the deployment of CloakX.

highlight all the challenges posed by the full process that our
system needs to address; this includes automatically identify-
ing all the changes in the DOM, generating the signatures for a
given extension, comparing those to the signatures of other ex-
tensions and removing redundant overlapping parts, evaluating
how extensions co-interfere in practice, as well as optimizing
the system to complete the attack in a short time. Our research
fills this significant gap by providing technical details on
how to create behavior-based fingerprints, demonstrating the
automated creation and detection of such fingerprints at scale,
and exploring their effectiveness in practical settings.

Countermeasures. Trickel et al [55] proposed CloakX, a
system that aims to render extension enumeration ineffective
by diversifying the attributes of fingerprints. To prevent ex-
tension detectability, ClockX substitutes the values of ID and
class attributes of the injected DOM nodes with randomized
values. In addition to that, it also injects random tags and
attributes in the page. It does so to: (i) inhibit websites that use
DOM queries (i.e., methods getElementsByClassName(),
getElementsByTagName() and getElementById()) from
identifying specific elements that are injected by an extension
and (ii) make structural patterns noisy.

In Listing 4 we present two examples of Carnus finger-
prints that are rendered ineffective by the countermeasures
of CloakX [55]. Since CloakX substitutes the values of the
ID and class attributes, if we exclude these attributes from
our fingerprints, the first fingerprint in Listing 4 becomes
too generic after excluding the ID attribute, while the second
becomes empty after removing the class attribute.

However, our approach does not simply rely on the iden-
tification of specific elements and tags that are injected,
but analyzes all the changes in the honeysite, term-by-term,
to construct the fingerprints of each extension. Our system
considers all terms added and removed by each extension and,

by design, can detect and filter out noisy terms that could make
the fingerprints unstable. Listing 5 presents examples of Carnus
fingerprints that remain effective even if a user’s browser
relies on CloakX for protection. The first two fingerprints
are not changed at all, while the following two are modified
but still contain unique terms that lead to their identification.
Moreover, CloakX does not alter extensions’ intra-browser
and external communication patterns. We further explore our
attack’s effectiveness against CloakX in Section V.

IV. EXTENSION-BASED INFERENCE ATTACKS

While the set of extensions that are detected by our enu-
meration techniques can be used as a vector for fingerprinting,
these extensions can also reveal previously unknown and
potentially sensitive information about the user. This includes
her personal traits and interests, religious and political beliefs,
demographics, etc. In this section, we present the techniques
employed by Carnus for analyzing extensions, understanding
the functionalities they perform, and finally, extracting inter-
esting and potentially sensitive information about these users.

This analysis uses as input the extensions’ descriptions and
reviews that our crawler collected from the Chrome Web Store.
Since it is inherently hard, if not impossible, for someone other
than Google to collect information about all the users that have
installed each extension, we use users’ public reviews as a
substitute; This provides a unique view within the extension
ecosystem, allowing for an aggregate analysis on a very large
number of users. Moreover, users are required to install an
extension before being allowed to provide a review, resulting
in a dataset of users that have actually installed the extensions.

Topic classification. The first phase of our analysis lies in
understanding what functionality is offered by each extension
and then classifying them into distinct categories according to
their type. For this task we use the extensions’ descriptions. At
first, we pre-process and “clean” the noisy description text so
as to remove “irrelevant” text that can affect the outcome of the
classification (more details below). For the actual classification
we use Google’s Natural Language API [4], which is highly
accurate as we outline in Section VI. Google’s API provides 35
categories and 400 subcategories. We manually identified and
grouped all the categories/subcategories that refer to the same
(or related) topic under a generic label, so as to provide a more
concise categorization of the information that is pertinent to
our analysis. For example, we group together all health-related
categories (i.e., Health Conditions, Neurological Conditions,
etc.), under the label “Health”.

Pre-processing and cleaning descriptions. Typically each
extension is supposed to have two descriptions, a short one
that describes the extension’s functionality in one or two
sentences, and a longer one that provides more details about its
functionality, implemented features, supported websites, etc.
In practice, however, some of the extensions omit one or
both of the descriptions, or contain text that is not useful for
classification. The main challenge is identifying which parts of
their text are relevant and useful for classification, and which
have information that could potentially lead to incorrect results
and needs to be removed. This task is challenging since there
are no enforced guidelines regarding the content that should
be included in descriptions.

7

We start our processing by detecting the language of each
description and translating non-English ones into English. Text
is then split into paragraphs and sentences, and our system tries
to detect and remove text that corresponds to very short or im-
properly composed sentences. Carnus incorporates the NLTK
library [42] for part-of-speech tagging and removes sentences
that do not contain at least one noun and one verb. Finally,
our system uses NLTK’s implementation of the TextTilting
algorithm [25] to segment the text into multi-paragraph topical
blocks and, since the extensions’ functionality is more likely
to be described at the beginning of the description, it extracts
the first two such blocks for classification.

Description-based inference. We explore whether the
extensions’ descriptions reveal any sensitive information about
the users, such as their location, language, political inclination
or religious beliefs. For this task, we use the spaCy library [20]
to detect entities that correspond to locations (i.e., countries,
cities), nationalities, languages and ethnic, political or religious
groups. With this approach we detect and verify that 2,260
of the extensions indeed reveal such information about their
users. We note though that this number corresponds to a lower
bound as it depends on the library’s accuracy in detecting
such information, and improving named entity recognition
techniques is out of the scope of this work.

During the verification we only consider extensions for
which our process extracts specific demographic information,
and not cases where additional knowledge is needed for infer-
ring such information. For example, we do not consider entities
that correspond to organizations or companies. Although such
entities could be associated with particular countries, the task
of identifying these associations would require significant man-
ual effort. Furthermore, we use public wordlists of religious
and medical terms [17] and create a new wordlist containing
political terms, to detect extensions with descriptions that
reveal these types of sensitive information.

Reviewer-based inference attacks. Apart from the de-
scription text, we also utilize users’ reviews for each extension
to extract information that enables the inference of sensitive
user data. First, we explore the feasibility of inferring a user’s
ethnicity based on a fingerprinted extension. Specifically, we
are motivated by the observation that the users of a certain
extension can exhibit strong ethnic affinity due to its intended
functionality (e.g., an extension for buying subway tickets in a
specific region). While actual demographic information about
the extensions’ users is obviously not available, the majority
of reviews include the user’s name.

In practice, users can only review an extension in the
Chrome Store after they have installed it in their browser. More
importantly, the reviewers’ names that appear in the reviews
are actually the names from the users’ Google accounts and
not an arbitrary input provided by users at the time of the
review. Furthermore, while in the past reviews could either
be anonymous or include the user’s name, the anonymous
option is no longer allowed (in our dataset we find that
only 5.25% of the reviews are anonymous). While this lends
considerable veracity to our dataset, the inferred information
can be misleading if a Google account’s name is a pseudonym.
Reviews with nicknames or fictional names that do not match
entries in our name lists (described below) are discarded, but
fake accounts that use actual names will still be used in our

TABLE I: Number of extensions detected by each technique
employed by Carnus, including those that are unique to each
technique (i.e., cannot be detected by any other technique).

Detected Extensions
Detection technique Total Unique

WAR-based 25,866 23,046
Behavioral (DOM-based) 5,793 2,998
Inter-communication 859 181
Intra-communication 450 105

analysis. This is a limitation of our approach as there is no
straightforward method for detecting whether the name used
during the creation of a user’s Google account is fake or not
(e.g., consider a simple scenario where someone named “Jack
Smith” creates a Google account under the name “John Doe”).

Our analysis shows that while certain names do not reveal
much information as they can be commonly found in several
countries (e.g., John) others can provide a strong indication of
the user’s ethnicity. To that end, we use an extensive set of
name-by-origin lists (all names per country/ethnic group) cre-
ated from online resources. We correlate the reviewers’ names
to the lists to identify the countries or ethnic groups where this
name appears, and construct a vector of associated ethnicities
(e.g., the name “Deepika” is predominantly found in India
and Nepal). As aforementioned, fake names or pseudonyms
that do not match a known name from our list are discarded.
By combining the ethnicity vectors of the users that have
installed a specific extension, we create a breakdown of the
demographic information of each extension’s user population.

Extensions can attract a wildly diverse set of users and,
thus, not all of them are useful for inferring a targeted user’s
characteristics. As such, we need a method to filter out such
extensions and focus on those that have a more consistent user
profile. To identify suitable extensions, we use the Shannon-
Wiener index [49], which is commonly used in ecological and
biological studies for calculating the richness and diversity of
a given species, to pinpoint extensions with predominant user
ethnicities. An important dimension of the privacy invasiveness
of this approach is that it can bypass common technical mea-
sures taken by users to hide their country of origin or ethnicity
(i.e., VPNs and proxies). Finally, we map users’ names to
their gender, and discard ambiguous names associated with
both male and female. Here we only need to set a prevalence
threshold for deciding which extensions are useful for this type
of inference; e.g., depending on the scenario, an attacker might
consider any extension where one gender accounts for at least
80% of the users as sufficient confidence.

V. EXPERIMENTAL EVALUATION: FINGERPRINTS

Extension enumeration. We run Carnus on a collection
of 102,482 extensions and find that 29,428 unique extensions
can be identified by our system. We find that WAR-based
fingerprints can detect 25,866, of which 23,046 cannot be iden-
tified through other techniques. Behavior-based fingerprints
are the next most effective approach with 5,793 detections,
of which 2,998 are not detectable otherwise. Through inter-
communication patterns we detect 859 extensions and through

8

0

20

40

60

80

100

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

E
x
te

n
s
io

n
s
 (

C
D

F
)

Installations

Fig. 2: Number of installations for all the
extensions in our dataset.

 0

 5

 10

 15

 20

 25

 30

 35

 40

1-
10

K

10
K-2

0K

20
K-3

0K

30
K-4

0K

40
K-5

0K

50
K-6

0K

60
K-7

0K

70
K-8

0K

80
K-9

0K

90
K-1

03
K

D
e
te

c
ta

b
le

 (
%

)

Popularity (based on installations)

Fig. 3: Correlation of detectability of ex-
tensions and their relative popularity.

0

20

40

60

80

100

10
0

10
1

10
2

10
3

10
4

E
x
te

n
s
io

n
s
 (

C
D

F
)

Fingerprint size

Fig. 4: Extensions’ behavioral fingerprint
sizes. The blue lines denote where our
mismatch thresholds change.

TABLE II: Comparison to previous studies.

Paper Attack Platform Extensions Detectable
[52] Behavioral (DOM) Chrome 10,000 920*

[47] WAR Chrome 43,429 12,154
Firefox 14,896 1,003

[24] WAR Chrome 13,000 5,107

[44] WAR side-channel Chrome 10,620 10,620
Firefox 10,620 10,620
Chrome 10,459 1,932**[46] WAR revelation Firefox 8,646 1,379

Ours Multi-class Chrome 102,482 29,428

Note: We convert to absolute numbers when the original work reports
percentages. *Estimation based on detectable changes to DOM tree; signatures
were not created or tested. **Number estimated by authors since the presented
attack relies on random UUIDs which have not been deployed by Chrome yet.

intra-communication we detect 450; the number of extensions
that cannot be detected by other means is 181 and 105
respectively. The number of extensions that can be detected
by each one of the four techniques are summarized in Table I.
While our two new communication-based techniques detect a
smaller number of extensions, this is because such behavior
is less common among extensions and not due to limitations
of our fingerprint-generation process. Furthermore, these two
techniques are able to detect extensions that are not detectable
by previously known techniques.

Next, in Table II we compare to prior work and find that
our system has created the largest set of detectable extensions
to date. Most of these studies [24], [44], [46], [47] focused on
detecting extensions through exposed WARs (either directly or
through some indirect/side channel) – we statically analyzed
over 102K extensions to create the most complete collection
of Chrome extension WAR fingerprints. More importantly, we
create the first collection of automatically generated behavioral
extension fingerprints, which enable our novel analysis and
evaluation of their deployment in a realistic setting.

Figure 2 presents the number of installations for the
102,482 extensions in our collection. Around 43% of the
extensions have more than 100 installations, while around
20% of them have been installed more than 1000 times. In
Figure 3 we compare the detectability of extensions with their
popularity. We calculate their relative popularity based on the

number of installations of each extension and find that there is
a clear correlation, as more popular extensions have a higher
likelihood of being detectable by Carnus.

Furthermore, for the extensions that modify the page’s
contents, we find that 5,119 out of the 5,793 (88.36%) exten-
sions always perform the same modifications (i.e., they have a
single behavioral fingerprint). For the extensions that exhibit
more than one behaviors, we find that 177 (3.05%) have two
different fingerprints (i.e., the three runs produce two identical
fingerprints and one that is different from the other two) and
497 (8.57%) extensions that have three different fingerprints.
Figure 4 presents the size of the behavioral fingerprints of the
extensions in our dataset. For the extensions that have more
than one fingerprints, in Figure 4 we consider the extension’s
fingerprint with the largest size. We find that more than half
of the extensions (54.6%) have a small fingerprint (up to
10 terms), revealing that extensions typically do not heavily
modify pages. Around 26% have fingerprints of 10 to 50
terms, while 19.5% have fingerprints larger than 50. Finally,
less than 4% of the fingerprints contain more than 1K terms;
these extensions inject entire scripts, like extension UUID:
ohahllgiabjaoigichmmfljhkcfikeof, or CSS files, like
UUID: ngkinkknobojamikjhodnojnpkbgpddp.

Practical extension enumeration. While detecting a stan-
dalone extension is a fairly straightforward task, we are also
interested in evaluating our system’s extension enumeration
capabilities when multiple extensions are simultaneously in-
stalled, as would be the case in a realistic scenario. We setup
an experiment where our system randomly selects and installs
K fingerprintable extensions from our dataset and visits our
honeysite. We only use fingerprintable extensions since non-
fingerprintable extensions do not affect detection or interfere
with other extensions in any way, and using them would
artificially boost our true positive rate. As such, this experi-
ment truly explores the challenge of extension enumeration in
practical settings, and is the first to shed light on the intricacies
of behavioral-based extension fingerprinting.

Table III presents the results of this experiment; we cal-
culate scores over 100 independent runs for each size of K,
where in each run K extensions are randomly installed. TP
refers to correctly detected extensions, FP denotes extensions
incorrectly detected as installed, and FN is installed extensions
that our system could not detect. Since Carnus can detect more
extensions than those that are actually installed, the TP+FP

9

TABLE III: Carnus’ accuracy in multi-extension environments.

2 3 4 5 6 7 8 9 10
TP (%) 97.5 97 98 98.6 98.5 97.6 98.9 97.5 98.9
FP (%) 0.5 4 7.25 5.4 6.2 6.7 3.4 7 2.5
FN (%) 2.5 3 2 1.4 1.5 2.4 1.1 2.4 1.1
F1 (%) 98.5 96.5 95.5 96.7 96.3 95.5 97.8 95.4 98.2

percentages can add up to more than 100%, e.g., if the user
has 4 extensions installed but our system returns 5 detected
extensions. An important detail is that certain extensions have
the same functionality, perform the same modifications and
have identical fingerprints. This can occur because developers
publish multiple instantiations of the same extension (e.g., in
different languages). For example, the extensions “TinyFilter
PRO”, “Tiny WebFilter” and “WebFilter FREE” are offered by
the same developer and have the same functionality. Similarly,
extensions like ad-blockers exhibit essentially the same func-
tionality can be indistinguishable. We find that 349 extensions
are affected by such ambiguous fingerprints, which is less
than 5.5% of the extensions that are fingerprintable through
our behavioral techniques. In the table we do not count the
additional labels of extensions with identical fingerprints as
false positives. For instance, in the aforementioned example,
the three identical extensions will be considered as one label
when calculating the FP rate.

As shown in Table III, our system correctly identifies ∼97-
99% of the installed extensions in all cases, indicating the
consistent accuracy of our system. The extensions that Carnus
misses (i.e., FN: ∼1-3%) are extensions that perform new
modifications for which we do not have a fingerprint or are the
result of extension co-interference. After analyzing our results
we found that the main reason behind these false negatives is
the co-interference between the installed extensions, where the
modifications of one extension can affect the modifications of
the other. This co-interference can also cause false positives,
as the combined effect of multiple extensions can result in
matching the fingerprint of an extension that is not installed
in the user’s browser. Another reason for false positives is
that Carnus allows certain mismatches when comparing finger-
prints, which can lead to misclassifying extensions that have
similar fingerprints and whose differences fall within the range
of allowed mismatches. The FP rate is less consistent, with an
average of 4.77% across all values of K. If we do include
the labels of multiple identical extensions as false positives
(e.g., in the previous example 2 of the 3 identical extensions
would count towards the false positives) our average FP rate
across all sizes of K becomes 8.1%. Nevertheless, despite the
challenging nature of behavior-based fingerprinting in practice,
our system is highly accurate with an F1 score of 95.4-98.5%.

Countermeasure effects. Trickel et al. [55] recently pro-
posed CloakX as a defense against extension fingerprinting.
While their approach is obviously not effective against our
inter- and intra-communication fingerprints, we want to quan-
tify its effectiveness against our other behavior-based finger-
prints that fall within their threat model. In that work, they sep-
arate behavior-based fingerprints into two different categories,
namely anchorprints and structureprints. However, since our
behavior-based fingerprints cover both of their categories, for
ease of presentation we will continue to refer to them as

behavior-based fingerprints. We refer the reader to their paper
for the full details behind their proposed countermeasure but, in
a nutshell, their system randomizes the values of ID and class
attributes to prevent behavior-based detection. They also inject
random tags, attributes, and custom attributes into each page,
and randomize the path of web-accessible resources. As such,
we analyze our behavioral fingerprints and quantify the effect
of their proposed countermeasure on our system.

Since CloakX randomizes ID and class attributes, we first
quantify the effect of removing all such ID and class element
additions from the behavioral fingerprints. We find that the
fingerprints of 2,790 (48.16%) extensions do not rely on such
elements and are thus not affected by the proposed defense.
Out of the remaining fingerprints, we find that 751 (12.96%)
are affected in a way that would prevent uniquely identifying
the extensions. When we also consider our communication-
based fingerprints, 51 of these 751 extensions can be identified.
Thus, 5,093 (87.92%) extensions are not affected by this
countermeasure.

To prevent WAR-based detection CloakX replaces exten-
sions’ WAR paths with a randomized value. While this coun-
termeasure is effective against WAR-based detection, it does
not affect our behavior-based detection. When a WAR URL
(i.e., chrome-extension://<UUID>/<path>) is included
in the extension’s behavioral fingerprint, CloakX can only
randomize the resource’s path and not the UUID. Thus, we can
discard the randomized path from the behavioral fingerprint,
as shown in the last example in Listing 5, and the fingerprint
will still be unique among all our behavioral fingerprints.

Regarding the effect of tags and attributes being randomly
added by CloakX, this can be counteracted using Carnus’s
mechanism for detecting and removing dynamic content from
the fingerprints. Specifically, by visiting our honeysite multiple
times during the fingerprint generation, our system can detect
which added terms remain the same across visits and which
ones change. For the extensions that have only one behavioral
fingerprint in our database3 Carnus can safely filter out the
randomly added artifacts, without affecting the extensions’
fingerprints. To that end, from the 5,093 extensions that our
system can identify after removing the fingerprints with ID
and class attributes, we end up with 4,800 extensions that
have only one fingerprint in our database (313 of them were
re-written to remove dynamic parts of partially matching
terms). From the 293 extensions that have fingerprints that
could potentially be affected by CloakX randomly adding
tags and attributes, 250 do not have any communication-based
fingerprints. Even though the random tags added by CloakX
to the fingerprints of these 250 extensions can most likely be
identified and removed with a sufficient number of visits to our
honeysite, in the worst case scenario where our system is not
able to remove the added tags and attributes for any of these
250 extensions, 4,843 out of the 5,793 (83.6%) extensions that
have behavioral fingerprints will remain unaffected. Overall,
Carnus will be able to uniquely identify 83.6% - 87.92% of
the extensions that have behavioral fingerprints even if CloakX
is deployed.

3This includes extensions that always perform the same modifications, and
extensions with fingerprints that differ only because of partially matching
terms, which our system re-writes into a single fingerprint after discarding the
dynamic part of the partially matching terms, as explained in Section III-B.

10

System performance. As discussed in Section III, during
the fingerprint generation phase our system visits our honeysite
with a single extension installed and captures all the modifica-
tions, message exchanges, and resource fetching conducted by
the extension. Carnus waits for 15 seconds before capturing the
contents of the page and generating the behavioral fingerprints,
so as to allow enough time for all the modifications to take
place and the external resources to be fetched. The processing
for generating the fingerprints (i.e., constructing the sets of
added and removed terms) takes less than 1 second. Since
each extension needs to be dynamically analyzed 3 times, we
parallelize 3 different browser instances and the overall time
that is spent for exercising each extension during the dynamic
analysis phase does not exceed 16 seconds. This process is
performed once per extension and only repeated if a newer
version of an extension is released; given the low overhead it
is more than suitable for practical large scale deployment.

A more critical dimension of a fingerprinting system’s
performance is the time required for the extension detection
phase. During our implementation, our goal was to minimize
the overhead that our system imposes on the client side and,
thus, minimize the time a user needs to stay on our website for
Carnus to detect her installed extension. For this, we offload
all the processing for behavior-based detection to the server,
which includes matching the modification and communication
signatures with the stored extensions’ fingerprints etc. The
JavaScript code in our page that is responsible for the WAR-
based detection, obviously, needs to run on the client side.

To assess this aspect of our performance, we conduct exper-
iments using an off-the-shelf commodity desktop machine with
a Quad Core Intel i7-7700 and 32GB of RAM. Specifically, we
automate a browser instance that has 4 extensions installed to
visit our honeypage. We then measure the time that is required
for processing to complete both on the client and server side.
We run this experiment 300 times with a different set of 4
randomly-selected extensions installed each time. The client
side processing requires 8.77 seconds on average (stdev: 0.39),
with a median value of 8.58 seconds. The server only requires
3.62 seconds on average (stdev: 1.83), with a median of 2.94
seconds. In other words, since the backend processing is not
dependent on the user remaining on the page, Carnus requires
the user to stay on our honeysite for less than 10 seconds to
successfully detect the installed extensions. This highlights the
efficiency of our attack and its practicality in deployment in
realistic scenarios. To examine whether the number of installed
extensions affects the processing time that is required, we
repeat the experiment with 5 extensions being installed, and
find that the average duration remains essentially the same.

VI. EXPERIMENTAL EVALUATION: INFERENCE

While extension enumeration can be used as part of the
browser fingerprinting process, the set of detected extensions
can also be used to infer sensitive information about that
user, which could enable or facilitate a wide range of privacy-
invasive practices, from government surveillance of religious
minorities [7] to tailored advertising that targets sensitive
topics [16], [34] (e.g., health issues).

Extension classification. The first phase of our inference
attack uses Google’s Natural Language API for identifying the

10
0

10
1

10
2

10
3

Jobs & Education

Beauty & Fashion

Sports

Hobbies & Leisure

Travel

Fam
ily & Relationships

News/Politics

Health

Religion

E
x
te

n
s
io

n
s

Categories

Interests/preferences
Sensitive information

Fig. 5: Categories of extensions that reveal personal and
potentially sensitive information.

categories that better describe each extension. This allows us to
classify 20,409 of the extensions in our dataset; the remaining
9,019 extensions could not be assigned to any category, mainly
due to them having a very short description text.

As one might expect, the most popular category is that
of Computing (subclasses: Multimedia, Programming, Internet
Software, etc.) with 7,652 extensions. The next most popular
category is related to Social Networks with 4,977. While such
categories do not reveal any information that is interesting
from a privacy perspective, there are, however, other categories
that reveal more personal information. In Figure 5 we present
the main such categories and distinguish between those that
reveal important but non-sensitive information (e.g., the user’s
interests) and those that reveal sensitive information such as a
user’s health conditions, religion and political views.

For instance, in the Health category we can find extensions
such as UUID: knijgomkfcdigmbogcnffcbfgmapmkca,
which is designed to assist people with dyslexia, and UUID:
edmpbiamnlgdichailkadlagmbklhbpk, which allows users
to compare their own images to visually similar skin cancer
images on the web. In the Religion category there are exten-
sions like UUID: ndmbeogingkjkmmkoomnigifmpajmbkc
and UUID: apkkllhahggfkhfdlmpopcncnaiclfdm, which
expose the user’s religion.

Our classification results in assigning 838 extensions to the
Jobs & Education category, which is the most prominent one,
and 46 to the Family & Relationships category, which is the
least common one among the less-sensitive categories. For the
most sensitive categories of News/Politics, Health and Religion
our classification results in 238, 121 and 105, respectively (the
list of extensions in these categories is available online [5]). To
assess the accuracy of the classification we randomly chose 50
extensions from each one of the three sensitive categories, and
manually checked if they were assigned to the correct category
or not. Through this manual process we found the accuracy of
the classification to be 100%, 86% and 80% for the respective
categories of News/Politics, Health and Religion.

Ethnicity inference. Next we analyze our fingerprintable
extensions and calculate the Shannon-Weiner index (SWI) of
the ethnicities inferred based on the names of the reviewers.
Since this index incorporates both the richness and evenness
of the population (i.e., reviewers’ ethnicities), we found that
for extensions with a fair number of reviews, a threshold of
3.5 is sufficient to indicate whether an ethnicity is prevalent;
in practice attackers can fine-tune this threshold based on their

11

requirements. Our analysis shows that this technique can iden-
tify 12,754 (43.33%) extensions with a prevailing ethnicity. To
further increase our confidence, if we only consider extensions
that have been installed by at least 500 users and have reviews
by at least 20 different users, 2,593 extensions can be used for
this type of inference.

As this approach is topic agnostic, i.e., does not rely
on the extensions’ description or type functionality, it en-
ables the inference of information that is well hidden and,
practically, unavailable. For example, the “FlashSaleTricks”
extension (UUID: bboalniaekhennojedffbbjlokcpbjgn)
has a Shannon-Weiner index of 2.62. The language of that
extension, and the text of its description, is English, but Indian
names are predominant in its reviews. By checking its website
(https://www.flashsaletricks.com/) we found that it indeed tar-
gets Indian users. An interesting case is that of the “Download
Master” (UUID: dljdacfojgikogldjffnkdcielnklkce),
which appears to be popular among Russian users (SWI=3.47).
While this extension is in English, we found that upon in-
stallation it downloads additional software that is in Russian.
Similarly, while the description of the “J2TEAM Security”
extension (UUID: hmlcjjclebjnfohgmgikjfnbmfkigocc)
is in English, the majority of its reviewers are Vietnamese
(SWI=3.21). In another example, the “wanteeed” extension
(UUID: emnoomldgleagdjapdeckpmebokijail), with an
index of 3.29, is shopping-related and is popular with French
predominantly female users (2.9x more female names).

Sensitive information inference. To further understand
what type of information can be inferred from the presence
of specific extensions, and which extensions reveal such in-
formation in practice, we investigate whether the languages of
an extension can be used for characterizing the user. To that
end, we collected the languages that are supported by each
extension from the Chrome Web Store. We find that 24,392
(82.88%) of the extensions only support a single language,
and that 5,425 of them (18.43% of detectable extensions) are
in a language different from English while 4,623 (15.7%) have
English (United States) as their language. Moreover, for exten-
sions that support multiple languages we find that 1,747 out of
4,983 support 4 or less languages. Extensions with an extensive
list of languages cannot, in practice, provide any insights about
the user. Finally, apart from the extensions’ languages that are
listed in the Web Store, 3,922 (13.32%) extensions have a
description in a language other than English, which indicates
that those extensions target a specific language-speaking popu-
lation. While extensions that are exclusively in English cannot
be used for determining the origin of the user, most of the
other languages can provide strong indications about the user’s
ethnicity, country or residence/origin. Our analysis identified
a total of 7,552 (25.66%) non-English extensions that reveal
the language of the user.

To further explore what sensitive information can be in-
ferred from extensions, we conduct a more in-depth analysis
on the extensions’ description text. First, we use spaCy’s
Named Entity Recognition (NER) [20] to identify entities in
the extensions’ description that expose information regarding
the user’s location, nationality or language. Next, we compile
a comprehensive list of mappings between countries and
ethnicities, from online sources, and use it to automatically
cross-match and verify that the inferred information indeed

refers to locations and nationalities. By matching the detected
entities with the ethnicities and countries in our list, we were
able to automatically verify 1,945 extensions. Since our list
does not contain region/city names, we manually inspected
the remaining entities and found 315 additional extensions
with descriptions that include information that could reveal
the user’s location or nationality. However, in our analysis
we do not consider any entities that can reveal information
but require region-specific knowledge by the attacker (e.g.,
UUID: cgdogkoldofookodmiipcakaejpgocgc). In total,
this approach led to the identification of 2,260 extensions.

Next, by using our name-lists we map the names of the
reviewers of each extension to their gender, and calculate the
percentage between male and female. We find that for 1,448
extensions the percentage of one gender over the other exceeds
80%, which in many cases is sufficient to determine the gender
of the users that have the extension installed in their browser.

Since Google’s API cannot classify all the detectable
extensions, as some of them have a very short description text,
we opt for another approach that could identify extensions that
reveal sensitive information. Thus, we use publicly available
wordlists [17] of religious and medical terms, and search for
those terms in the extensions’ description text. For this task
we first discard certain terms in the wordlists’ terms that are
generic or have multiple meanings (i.e., the terms virus and
infection have a different meaning in the context of the Web),
as they could lead to many false positives. This straightforward
approach of matching terms returned 73 extensions that are
related to religion and 70 that are health related. We manually
inspected these extensions and found that indeed 58 (79.45%)
of the former ones reveal the user’s religion. For the latter we
found that 62 extensions are related to health (88.57%) and that
49 of these (70%) reveal health conditions. The remaining 13
extensions are for physicians or web developers (e.g., to help
them build websites that are suitable for colorblind users).

We also created a wordlist with political terms and used it
to identify extensions that could possibly reveal the political
inclination of the user. Intentionally, we keep this wordlist
short, only containing terms that clearly refer to politics (such
as Democrats, Republicans, Liberals, Conservatives, Donald
Trump, Hillary Clinton, Obama, UKIP, Brexit, etc.). With
this wordlist we matched 340 extensions, and though manual
inspection we found that indeed 323 (95%) are related to
politics and that 307 of them (90.29%) provide insights about
the user’s political inclination.

Overall statistics. To have a more complete view regarding
the extensions that reveal sensitive information about politics,
health and religion, we combine the results of the classification
with the results of the wordlist-based approach (only the
extensions that we manually verified as TPs from the wordlist-
based approach) This results in 387, 147 and 116 extensions
that reveal information about the user’s political inclination,
health and religion, respectively. Furthermore, we find that
these extensions have been installed 406,869, 1,177,573, and
885,923, times respectively, highlighting the extent of this
significant privacy threat. If we consider all the categories from
Figure 5, since even less sensitive categories are useful for
privacy-invasive practices like targeted advertising, the total
number of installations exceeds 59 million.

12

0

20

40

60

80

100

 1 10 100

U
s
e
rs

 (
C

D
F

)

Number of Reviews (log)

99

99.2

99.4

99.6

99.8

100

 5 10 15 20 25 30

Fig. 6: Number of reviews per user.

Furthermore, when considering all the above approaches
for the inference of sensitive user information, from the name-
based ethnicity and gender inference to the identification of
the user’s language, religion, political inclination etc., we find
that 18,286 (62.13%) of the detectable extensions reveal such
pieces of sensitive information. 15,996 of all these extensions
can be identified through WAR and 14,042 of them cannot
be identified through other techniques. Behavior-based finger-
prints can identify 3,879 such extensions, of which 1,916 are
not detectable otherwise. Lastly, 617 and 240 extensions can be
identified through inter- and intra-communication fingerprints,
and 134 and 52 cannot be detected by other means.

De-anonymization attack. Next we focus on the unique-
ness of fingerprintable extensions for quantifying their suitabil-
ity for identifying users solely based on their set of extensions.
While prior studies explored how users could be uniquely
tracked within an anonymous crowd, we demonstrate a more
powerful attack that can infer the reviewer’s name based on
the uniqueness of their set of extensions. For our analysis we
only use eponymous reviews, which also include a unique user
ID – this removes the obstacle of users with identical names
(the number of reviews per user in our dataset is presented in
Figure 6). While we do not attempt to actually de-anonymize
any users, in practice attackers could use the name and profile
picture to discover even more information about the user [37].
Users can also be trivially matched to their reviews in other
Google services (e.g., business, restaurants, etc.) which can
lead to the inference of additional personal data. We want to
emphasize that our de-anonymization attack is, obviously, only
applicable to users that have written reviews for extensions;
for other users the attacker would be limited to anonymous
tracking as in prior studies.

We implement the unicity formula proposed by Achara et
al. for calculating the uniqueness of smartphone apps [9], and
use it to calculate the probability that a randomly selected
subset of extensions with cardinality K is unique within our
dataset of users. Prior work [52] reported that users had an
average of 4.81 extensions, so we calculate the unicity for
cardinality values of K = 1, . . . 10, as shown in Figure 7.
Surprisingly, we find that even when an attacker is able to
only detect 2 extensions in a user’s browser, there is a 77.5%
chance of uniquely identifying the user within a set of almost
84 thousand users. As one would expect, as the cardinality
increases so does the probability of uniquely identifying the
user. When assuming that 4 extensions have been detected,
9,286 users are candidate targets with a 94.5% probability of

0

10

20

30

40

50

60

70

80

90

100

 1 2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

10
4

10
5

10
6

U
n

ic
it
y
 (

%
)

U
s
e

rs

Set Cardinality

Unicity

Users

Fig. 7: Unicity of fingerprintable extension sets of different
size, and the corresponding size of the anonymity crowd.

being uniquely identifiable. When comparing to the numbers
reported in [24] we find that our unicity results are higher for
K < 4, which can be attributed to the significantly larger
number of users in our study. In practice, the number of
extensions installed per user will likely be higher than their
number of reviews (i.e., users are unlikely to write a review for
all their extensions) which could further increase their unicity.
Nonetheless, due to our larger number of users and larger set
of detectable extensions, we believe that our study offers a
more accurate representation of the discriminatory power of
browser extensions. Our findings also highlight the significant
privacy risk that any type of public data can introduce, even
something as innocuous as extension reviews.

VII. DISCUSSION AND FUTURE WORK

Ethical considerations. The techniques presented in this
paper present a severe privacy risk to users. However, it is
important to note that we do not actually run our attacks against
any users. Our attacks are based on the analysis of extension
characteristics and our goal is to explore what sensitive infor-
mation can be inferred from the presence of such extensions.
During our experiments we did not attempt to correlate any
extracted traits/characteristics to users. Furthermore, the review
analysis process relies on aggregate statistics regarding names
collected from publicly available reviews from Chrome’s Web
Store. The unicity measurements leverage reviewers’ unique
IDs for associating users with installed extensions, and does
not take into account or get correlated to any actual user infor-
mation. We have deleted all collected reviews after running our
experiments. We believe that our findings provide significant
additional incentives for browser vendors to adopt defenses
that have been recently proposed by the research community.
Apart from extension enumeration techniques enhancing the
uniqueness of a browser’s fingerprint, our inference techniques
mandate a reassessment of the extension ecosystem and the
threat it poses to users, and motivate a more cautious approach
to installing extensions.

Countermeasures. As demonstrated by our experimental
evaluation, the countermeasure proposed by Trickel et al. [55]
is ineffective against the vast majority of our behavioral
fingerprints. Two other studies [46], [50] recently proposed
whitelist-based countermeasures for mediating access between
extensions and web pages, and a similar approach has been
announced by Chrome [6]. These mechanisms can potentially
reduce the fingerprint surface exposed to certain domains,

13

but the ones that users whitelist will still be able to run the
attacks we demonstrated. While giving more control to users
is a positive development, site-blocking mechanisms that rely
on user configurations for setting policies can lead to user
confusion [35] and may be too challenging for average users.
Nonetheless, while more research is needed to fully prevent ex-
tension fingerprinting attacks, we believe that these approaches
are important steps towards better protecting users and should
be incorporated by browsers. While designing an effective
countermeasure is out of the scope of this work, we believe
that a technique that introduces innocuous (or imperceptible
to the user) behavioral activity that results in the behavioral
fingerprints of extensions resembling the fingerprints of other
extensions is an interesting future direction.

Classification and information extraction. We mainly
rely on the description text of the extensions for identifying
each extension’s topic and the sensitive information that can
be possibly inferred. However, since there are no guidelines
mandating the content and structure of the descriptions, these
are determined solely by the developer of the extensions and
are typically very inconsistent. Even though we developed a
pre-processing method, we cannot remove all text that can
possibly affect our classification results. As such, we plan
to investigate more advanced techniques for identifying the
relevant content, extracting the topic, and inferring sensitive
user information (e.g., machine learning classifiers that take
all extensions into account and detect more complex patterns).

Supplementary identity sources. We demonstrated how
attackers could leverage extension reviews as a potential source
for inferring a user’s identity. In practice, users leave behind an
abundance of digital “breadcrumbs” that result in privacy loss.
These can be correlated [22] to further amplify the attack’s
effect. An adversary could also potentially augment the dataset
of user reviews with reviews from other domains, namely
mobile apps. By automatically mapping specific browser ex-
tensions to the corresponding mobile apps (e.g., the Skype
Chrome extension to the Skype Android app) an attacker can
use the additional reviews from other platforms to create more
complete user profiles. Apart from using the name and images
as identifiers, stylometric techniques [11], [43] can be used for
correlating users across platforms.

Review analysis. During our inference attack analysis all
available reviewers are considered as part of the user set for
each extension regardless of the score that they have assigned.
This provides a lower bound estimation of unicity as it could
inflate the size of the user sets, which reduces the “uniqueness”
of that extension. A more conservative approach is to use a
heuristic based on the review score for assigning a user to
the set of users that have installed that extension. However,
users that have given a low rating may still continue to use
that extension. As such, we plan to explore more sophisticated
NLP-based techniques for identifying cases where users im-
plicitly reveal that they have uninstalled a given extension.

VIII. RELATED WORK

Browser fingerprinting [18] has garnered significant at-
tention from the research community, and prior work has
demonstrated the feasibility of several techniques that focus
on different browser aspects of the browser and underlying

hardware [13], [33], [40], [41]. More recently several studies
have focused on the fingerprintability of browser extensions,
which were also the focus of several blog posts by security
researchers in the past [14], [23], [29], [30]. Sjosten et al. [47]
presented the first large-scale study and demonstrated how
extensions expose WARs which allow websites to identify
and enumerate the extensions installed in a user’s browser.
At the same time Starov and Nikiforakis [52] proposed the
use of DOM modifications as behavior-based fingerprints
for extensions. They also conducted a user study with 854
participants and found that 14.1% of them had distinct sets
of extensions that could be detected by any website, thus,
uniquely identifying them. More recently, Gulyas et al. [24]
conducted a large user study with more than 16 thousand
participants and, using the fingerprinting technique from [47],
found that 54.86% of users were uniquely identifiable based
on their installed extensions. An alternative approach that
relied on a timing-based side-channel attack was proposed
by Sanchez-Rola et al. [44]. The core of their attack relies
on the access control mechanism enforced by browsers to
prevent unauthorized access of extension resources that have
not been explicitly labeled as public, which implicitly reveals
the existence (or absence) of a specific extension. A variation
of their time-based attack was presented by Van Goethem and
Joosen [56] as part of their exploration of fingerprinting attacks
that can link users’ isolated browsing sessions.

Apart from the fingerprintability of extensions, prior work
also explored one dimension of privacy leakage due to exten-
sions. Motivated by the seminal work of Krishnamurthy and
Wills on privacy diffusion on the web [31] and leakage in
request towards third parties [32], Starov and Nikiforakis built
a dynamic analysis framework that detected the leakage of
information (e.g., browsing history and search queries) from
Chrome extensions to third parties [51]. Recent studies also
demonstrated in different contexts how publicly available data
could enable the inference of sensitive data [17] or lead to the
de-anonymization of users [54].

IX. CONCLUSIONS

With browser vendors incorporating countermeasures
against cookie-based tracking, user tracking techniques that
rely on browser fingerprinting are becoming increasingly
prevalent. As a result, modern browsers have recently intro-
duced (or announced) mechanisms for mitigating the effect
of such techniques. Nonetheless, recent research has exposed
vulnerabilities in those countermeasures and have also pro-
posed additional countermeasures. In this paper we presented
the largest study on the unicity of extension fingerprints to date
and revealed their discriminatory effect in real-world settings
– apart from enabling attackers to uniquely identify a device
and track users, we outlined a de-anonymization attack that
leverages publicly available extension reviews for revealing the
user’s identity. We also conducted the first study detailing how
attackers can infer sensitive or personal user information from
detected extensions. The practicality of our attacks is high-
lighted by our comprehensive exploration of multiple extension
fingerprinting techniques (including two novel approaches) and
their evaluation under practical settings. Our experimental eval-
uation also demonstrated the robustness of our fingerprinting
techniques against state-of-the-art countermeasures proposed
by the research community, thus motivating the need for

14

additional research for potential countermeasures. Overall, we
hope that our research sheds more light on the risks users face
and leads users to a more critical view of extensions.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
their valuable feedback. Special thanks to our shepherd Adam
Doupé for all his help. This work was supported by the
DARPA ASED Program and AFRL (FA8650-18-C-7880), and
NSF (CNS-1934597). Any opinions, findings, conclusions, or
recommendations expressed herein are those of the authors,
and do not necessarily reflect those of the US Government.

REFERENCES

[1] “Chrome Developer Guide - Content Scripts,” https://developer.chrome.
com/extensions/content scripts, accessed on 2019-12-30.

[2] “Chrome Developer Guide - Manifest - Web Accessible Resources,”
https://developer.chrome.com/extensions/manifest/web accessible
resources, accessed on 2019-12-30.

[3] “Chrome Developer Guide - Message Passing,” https://developer.
chrome.com/extensions/messaging, accessed on 2019-12-30.

[4] “Google Cloud - AI & Machine Learning Products - Natural Language,”
https://cloud.google.com/natural-language/, accessed on 2019-12-30.

[5] “List of sensitive extensions,” https://pastebin.com/ux0QKf5S.
[6] “Google security blog - trustworthy chrome extensions, by

default,” https://security.googleblog.com/2018/10/trustworthy-chrome-
extensions-by-default.html, 2018, accessed on 2019-12-30.

[7] “Reuters - apple says uighurs targeted in iphone attack but disputes
google findings,” https://www.reuters.com/article/us-apple-cyber/apple-
says-uighurs-targeted-in-iphone-attack-but-disputes-google-findings-
idUSKCN1VR29K, 2019.

[8] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses, F. Piessens,
and B. Preneel, “Fpdetective: Dusting the web for fingerprinters,” in
Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, ser. CCS ’13, 2013.

[9] J. P. Achara, G. Acs, and C. Castelluccia, “On the unicity of smartphone
applications,” in Proceedings of the 14th ACM Workshop on Privacy in
the Electronic Society. ACM, 2015, pp. 27–36.

[10] S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett, “Vex:
Vetting browser extensions for security vulnerabilities.” in USENIX
Security Symposium, vol. 10, 2010, pp. 339–354.

[11] M. L. Brocardo, I. Traore, S. Saad, and I. Woungang, “Authorship
verification for short messages using stylometry,” in 2013 International
Conference on Computer, Information and Telecommunication Systems
(CITS). IEEE, 2013, pp. 1–6.

[12] A. S. Buyukkayhan, K. Onarlioglu, W. K. Robertson, and E. Kirda,
“Crossfire: An analysis of firefox extension-reuse vulnerabilities.” in
NDSS, 2016.

[13] Y. Cao, S. Li, and E. Wijmans, “(cross-)browser fingerprinting via OS
and hardware level features,” in 24th Annual Network and Distributed
System Security Symposium, NDSS, 2017. [Online]. Available:
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
cross-browser-fingerprinting-os-and-hardware-level-features/

[14] C. Cattani, “The evolution of chrome extensions detection,”
http://blog.beefproject.com/2013/04/the-evolution-of-chrome-
extensions.html, 2013, accessed on 2019-12-30.

[15] Q. Chen and A. Kapravelos, “Mystique: Uncovering information
leakage from browser extensions,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’18. New York, NY, USA: ACM, 2018, pp. 1687–1700.
[Online]. Available: http://doi.acm.org/10.1145/3243734.3243823

[16] A. Datta, M. C. Tschantz, and A. Datta, “Automated experiments on ad
privacy settings,” Proceedings on privacy enhancing technologies, vol.
2015, no. 1, pp. 92–112, 2015.

[17] K. Drakonakis, P. Ilia, S. Ioannidis, and J. Polakis, “Please forget where
i was last summer: The privacy risks of public location (meta)data,” in
26th Annual Network and Distributed System Security Symposium. The
Internet Society, 2019.

[18] P. Eckersley, “How unique is your web browser?” in Proceedings of
the 10th International Conference on Privacy Enhancing Technologies,
ser. PETS’10, 2010.

[19] S. Englehardt and A. Narayanan, “Online tracking: A 1-million-site
measurement and analysis,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2016,
pp. 1388–1401.

[20] Explosion AI, “spacy: Industrial-strength nlp,” https://spacy.io/, 2019.
[21] K. Garimella, O. Kostakis, and M. Mathioudakis, “Ad-blocking: A study

on performance, privacy and counter-measures,” in Proceedings of the
2017 ACM on Web Science Conference, ser. WebSci ’17, New York,
NY, USA, 2017, pp. 259–262.

[22] O. Goga, H. Lei, S. H. K. Parthasarathi, G. Friedland, R. Sommer, and
R. Teixeira, “Exploiting innocuous activity for correlating users across
sites,” in Proceedings of the 22Nd International Conference on World
Wide Web, ser. WWW ’13, 2013, pp. 447–458.

[23] J. Grossman, “I know what you’ve got (firefox extensions),”
http://blog.jeremiahgrossman.com/2006/08/i-know-what-youve-got-
firefox.html, 2006, accessed on 2019-12-30.

[24] G. G. Gulyas, D. F. Some, N. Bielova, and C. Castelluccia, “To
extend or not to extend: on the uniqueness of browser extensions and
web logins,” in Proceedings of the 2018 Workshop on Privacy in the
Electronic Society. ACM, 2018, pp. 14–27.

[25] M. A. Hearst, “Texttiling: Segmenting text into multi-paragraph
subtopic passages,” Comput. Linguist., vol. 23, no. 1, pp. 33–64, Mar.
1997. [Online]. Available: http://dl.acm.org/citation.cfm?id=972684.
972687

[26] U. Iqbal, Z. Shafiq, and Z. Qian, “The ad wars: retrospective measure-
ment and analysis of anti-adblock filter lists,” in Proceedings of the
2017 Internet Measurement Conference. ACM, 2017, pp. 171–183.

[27] C. Jackson and A. Barth, “ForceHTTPS: Protecting high-security web
sites from network attacks,” in Proceedings of the 17th International
World Wide Web Conference, 2008.

[28] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and
V. Paxson, “Hulk: Eliciting Malicious Behavior in Browser Extensions,”
in Proceedings of the USENIX Security Symposium. USENIX, 2014.

[29] J. Kettle, “Sparse bruteforce addon detection,” http://www.
skeletonscribe.net/2011/07/sparse-bruteforce-addon-scanner.html,
July 2011, accessed on 2019-12-30.

[30] K. Kotowitz, “Intro to chrome addons hacking: fingerprinting,”
http://blog.kotowicz.net/2012/02/intro-to-chrome-addons-hacking.html,
2012, accessed on 2019-12-30.

[31] B. Krishnamurthy and C. Wills, “Privacy diffusion on the web: a
longitudinal perspective,” in Proceedings of the 18th international
conference on World wide web. ACM, 2009, pp. 541–550.

[32] B. Krishnamurthy and C. E. Wills, “Characterizing privacy in online
social networks,” in Proceedings of the first workshop on Online social
networks. ACM, 2008, pp. 37–42.

[33] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty and the beast:
Diverting modern web browsers to build unique browser fingerprints,”
in 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 2016,
pp. 878–894.

[34] M. Lécuyer, G. Ducoffe, F. Lan, A. Papancea, T. Petsios, R. Spahn,
A. Chaintreau, and R. Geambasu, “Xray: Enhancing the web’s trans-
parency with differential correlation,” in 23rd {USENIX} Security
Symposium ({USENIX} Security 14), 2014, pp. 49–64.

[35] P. Leon, B. Ur, R. Shay, Y. Wang, R. Balebako, and L. Cranor, “Why
johnny can’t opt out: a usability evaluation of tools to limit online
behavioral advertising,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 2012, pp. 589–598.

[36] L. Liu, X. Zhang, G. Yan, S. Chen et al., “Chrome extensions: Threat
analysis and countermeasures.” in NDSS, 2012.

[37] A. Malhotra, L. Totti, W. Meira Jr, P. Kumaraguru, and V. Almeida,
“Studying user footprints in different online social networks,” in Pro-
ceedings of the 2012 International Conference on Advances in Social

15

https://developer.chrome.com/extensions/content_scripts
https://developer.chrome.com/extensions/content_scripts
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/messaging
https://developer.chrome.com/extensions/messaging
https://cloud.google.com/natural-language/
https://pastebin.com/ux0QKf5S
https://security.googleblog.com/2018/10/trustworthy-chrome-extensions-by-default.html
https://security.googleblog.com/2018/10/trustworthy-chrome-extensions-by-default.html
https://www.reuters.com/article/us-apple-cyber/apple-says-uighurs-targeted-in-iphone-attack-but-disputes-google-findings-idUSKCN1VR29K
https://www.reuters.com/article/us-apple-cyber/apple-says-uighurs-targeted-in-iphone-attack-but-disputes-google-findings-idUSKCN1VR29K
https://www.reuters.com/article/us-apple-cyber/apple-says-uighurs-targeted-in-iphone-attack-but-disputes-google-findings-idUSKCN1VR29K
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/cross-browser-fingerprinting-os-and-hardware-level-features/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/cross-browser-fingerprinting-os-and-hardware-level-features/
http://blog.beefproject.com/2013/04/the-evolution-of-chrome-extensions.html
http://blog.beefproject.com/2013/04/the-evolution-of-chrome-extensions.html
http://doi.acm.org/10.1145/3243734.3243823
https://spacy.io/
http://blog.jeremiahgrossman.com/2006/08/i-know-what-youve-got-firefox.html
http://blog.jeremiahgrossman.com/2006/08/i-know-what-youve-got-firefox.html
http://dl.acm.org/citation.cfm?id=972684.972687
http://dl.acm.org/citation.cfm?id=972684.972687
http://www.skeletonscribe.net/2011/07/sparse-bruteforce-addon-scanner.html
http://www.skeletonscribe.net/2011/07/sparse-bruteforce-addon-scanner.html
http://blog.kotowicz.net/2012/02/intro-to-chrome-addons-hacking.html

Networks Analysis and Mining (ASONAM 2012). IEEE Computer
Society, 2012, pp. 1065–1070.

[38] A. Mathur, J. Vitak, A. Narayanan, and M. Chetty, “Characterizing the
use of browser-based blocking extensions to prevent online tracking,”
in Fourteenth Symposium on Usable Privacy and Security ({SOUPS}
2018), 2018, pp. 103–116.

[39] G. Merzdovnik, M. Huber, D. Buhov, N. Nikiforakis, S. Neuner,
M. Schmiedecker, and E. Weippl, “Block me if you can: A large-scale
study of tracker-blocking tools,” in 2017 IEEE European Symposium
on Security and Privacy (EuroS P), 2017, pp. 319–333.

[40] K. Mowery and H. Shacham, “Pixel perfect: Fingerprinting canvas in
HTML5,” in Proceedings of W2SP 2012, May 2012.

[41] M. Mulazzani, P. Reschl, M. Huber, M. Leithner, S. Schrittwieser,
E. Weippl, and F. Wien, “Fast and reliable browser identification with
javascript engine fingerprinting,” in Web 2.0 Workshop on Security and
Privacy (W2SP), vol. 5, 2013.

[42] NLTK Project, “Natural language toolkit,” https://www.nltk.org/, 2019.
[43] R. Overdorf and R. Greenstadt, “Blogs, twitter feeds, and reddit com-

ments: Cross-domain authorship attribution,” Proceedings on Privacy
Enhancing Technologies, vol. 2016, no. 3, pp. 155–171, 2016.

[44] I. Sanchez-Rola, I. Santos, and D. Balzarotti, “Extension Breakdown:
Security Analysis of Browsers Extension Resources Control Policies,”
in Proceedings of the 26rd USENIX Security Symposium (USENIX
Security), August 2017.

[45] S. Sivakorn, A. D. Keromytis, and J. Polakis, “That’s the way the cookie
crumbles: Evaluating https enforcing mechanisms,” in Proceedings of
the 2016 ACM on Workshop on Privacy in the Electronic Society, ser.
WPES ’16. ACM, 2016, pp. 71–81.

[46] A. Sjösten, S. Van Acker, P. Picazo-Sanchez, and A. Sabelfeld, “Latex
gloves: Protecting browser extensions from probing and revelation
attacks,” in 26th Annual Network and Distributed System Security
Symposium. The Internet Society, 2019.

[47] A. Sjösten, S. Van Acker, and A. Sabelfeld, “Discovering browser
extensions via web accessible resources,” in Proceedings of the Seventh
ACM on Conference on Data and Application Security and Privacy,
ser. CODASPY ’17. New York, NY, USA: ACM, 2017, pp. 329–336.
[Online]. Available: http://doi.acm.org/10.1145/3029806.3029820

[48] P. Snyder, C. Taylor, and C. Kanich, “Most websites don’t need to

vibrate: A cost-benefit approach to improving browser security,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’17. New York, NY, USA: ACM,
2017, pp. 179–194.

[49] I. F. Spellerberg and P. J. Fedor, “A tribute to claude shannon (1916–
2001) and a plea for more rigorous use of species richness, species
diversity and the ‘shannon–wiener’index,” Global ecology and biogeog-
raphy, vol. 12, no. 3, pp. 177–179, 2003.

[50] O. Starov, P. Laperdrix, A. Kapravelos, and N. Nikiforakis,
“Unnecessarily identifiable: Quantifying the fingerprintability of
browser extensions due to bloat,” in The World Wide Web Conference,
ser. WWW ’19. New York, NY, USA: ACM, 2019, pp. 3244–3250.
[Online]. Available: http://doi.acm.org/10.1145/3308558.3313458

[51] O. Starov and N. Nikiforakis, “Extended tracking powers: Measuring
the privacy diffusion enabled by browser extensions,” in Proceedings of
the 26th International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 2017, pp. 1481–
1490.

[52] ——, “Xhound: Quantifying the fingerprintability of browser exten-
sions,” in 2017 IEEE Symposium on Security and Privacy (SP). IEEE,
2017, pp. 941–956.

[53] StatCounter, “Browser market share worldwide,” http://gs.statcounter.
com/browser-market-share, 2019.

[54] J. Su, A. Shukla, S. Goel, and A. Narayanan, “De-anonymizing web
browsing data with social networks,” in Proceedings of the 26th
International Conference on World Wide Web. International World
Wide Web Conferences Steering Committee, 2017, pp. 1261–1269.

[55] E. Trickel, O. Starov, A. Kapravelos, N. Nikiforakis, and A. Doupé,
“Everyone is different: Client-side diversification for defending
against extension fingerprinting,” in 28th USENIX Security Symposium
(USENIX Security 19). USENIX Association, 2019.

[56] T. Van Goethem and W. Joosen, “One side-channel to bring them all
and in the darkness bind them: Associating isolated browsing sessions,”
in 11th {USENIX} Workshop on Offensive Technologies ({WOOT} 17),
2017.

[57] J. Wagner, “Assessing loading performance in real life with navigation
and resource timing,” https://developers.google.com/web/fundamentals/
performance/navigation-and-resource-timing/, 2019, accessed on 2019-
12-30.

16

https://www.nltk.org/
http://doi.acm.org/10.1145/3029806.3029820
http://doi.acm.org/10.1145/3308558.3313458
http://gs.statcounter.com/browser-market-share
http://gs.statcounter.com/browser-market-share
https://developers.google.com/web/fundamentals/performance/navigation-and-resource-timing/
https://developers.google.com/web/fundamentals/performance/navigation-and-resource-timing/

	Introduction
	Background and Threat Model
	System Design and Implementation
	WAR-Based Extension Enumeration
	Behavior-Based Extension Enumeration
	Intra-communication Based Enumeration
	Inter-communication Based Enumeration
	Behavior-based Fingerprinting: Current State of Affairs

	Extension-based Inference Attacks
	Experimental Evaluation: Fingerprints
	Experimental Evaluation: Inference
	Discussion and Future Work
	Related Work
	Conclusions
	References

