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Abstract. The IEEE 802.15.4 standard for low-power radio communi-
cations defines techniques for the encryption of layer 2 network frames
but does not discuss methods for the establishment of encryption keys.
The constrained nature of wireless sensor devices poses many challenges
to the process of key establishment. In this paper, we investigate whether
any of the existing key exchange techniques developed for traditional,
application-centric wireless sensor networks (WSN) are applicable and
viable for IPv6 over Low power Wireless Personal Area Networks (6LoW-
PANs). We use Elliptic Curve Cryptography (ECC) to implement and
apply the Elliptic Curve Diffie Hellman (ECDH) key exchange algorithm
and we build a mechanism for generating, storing and managing secret
keys. The mechanism has been implemented for the Contiki open source
embedded operating system. We use the Cooja simulator to investigate
a simple network consisting of two sensor nodes in order to identify the
characteristics of the ECDH technique. We also simulate a larger net-
work to examine the solution’s performance and scalability. Based on
those results, we draw our conclusions, highlight open issues and suggest
further work.
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1 Introduction

Wireless Sensor Networks (WSNs) consist of a large number of autonomous de-
vices that cooperate to collect important data and send them through wireless
communication channels to a base station or a data centre. Every node mainly
consists of a microcontroller, a memory unit, a transceiver, a power source and
one or more sensing elements. Due to their nature, wireless sensors are very con-
strained in terms of available RAM, speed of computation, network bandwidth
and battery lifetime.

In 2003, the IEEE published the first version of IEEE 802.15.4, a specification
for the physical and link layer operation for low-power radio communication. Ini-
tial research efforts suggested that TCP/IP was not viable for WSNs and that
bespoke, application-centric network stacks were more suitable [1, [2]. However,
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the release of ulP demonstrated that standards-compliant TCP /IP stacks for em-
bedded devices are viable [3]. Subsequently, it was shown that a TCP /IP-based
WSN could outperform traditional, application-centric network designs [4]. As
a result, a series of Internet specifications have been suggested for the trans-
mission and routing of datagrams with IPv6 over Low power Wireless Personal
Area Networks (6LoWPANS) [5].

With 6LoWPAN, WSN nodes with IEEE 802.15.4 radio transceivers are di-
rectly accessible from the Internet and are exposed to a host of security threats.
Modern sensor devices are often equipped with an encryption/decryption co-
processor and link layer frames can be transmitted encrypted with the 128-bit
Advanced Encryption Standard (AES) algorithm. However, there are challenges
associated with key management and the process of key exchange in 6LoWPANs
is not trivial. On many occasions, keys are individually pre-loaded to the nodes,
which can be characterized as an important security vulnerability.

In this paper, we investigate whether any of the existing techniques for dy-
namic generation and exchange of cryptographic keys are applicable and can
be adopted for 6LoWPANs. We argue that techniques based on Elliptic Curve
Cryptography (ECC) [6] are very promising and we implement an Elliptic Curve
Diffie Hellman (ECDH) shared key generation and establishment algorithm. This
mechanism is also responsible for the management of existing encryption keys,
searching and returning them to the link layer when requested, or starting the
key exchange process if two neighbouring nodes do not have a shared secret key.
It additionally handles key storage, expiration and replacement.

We implemented the key management mechanism and ECDH algorithm for
the Contiki embedded operating syste and we evaluated it in terms of ap-
plicability, viability and scalability with network size and density. We evaluate
memory footprint for a single node as well as how the number of stored keys
affects network scalability. In addition, we use the Cooja simulator to conduct
several simulations and assess node energy consumption, network lifetime and
performance.

2 Background

Key management schemes proposed for WSNs are divided mainly into two differ-
ent categories: i) symmetric key schemes where the keys are either pre-installed
or assigned by a trusted party and ii) schemes based on Public Key Cryptography
(PKC).

2.1 Symmetric Key Schemes

Compared to PKC, symmetric key schemes have the advantage that
they are less computationally intensive, requiring fewer micro-controller instruc-
tion cycles to perform the calculations required for encryption and decryption.

! http://www.contiki-os.org
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Keys are pre-installed during the network’s deployment and initialization phase
and neighbouring nodes discover and establish a shared key during the network
formation phase [1].

Among existing efforts is a key exchange approach which requires the existence
of a trusted party in the WSN, acting as a Key Distribution Centre (KDC), a
role which can be assumed by a Base Station (BS) [§]. In this scheme the KDC
must establish a secure, single-hop communication channel with every node of
the network, in order to deliver the secret keys. The trusted entity-based key
exchange scheme cannot be applied in 6LoWPANSs because the assumption that
all nodes are within a single hop of the base station does not always hold true:
The aim of 6LoWPAN and related specifications is to facilitate the formation of
multi-hop networks [9].

A different approach relies on each node having a pre-installed set of keys cho-
sen from a key pool. These schemes can be either deterministic or probabilistic.
Under deterministic schemes, every node is capable of establishing a pair-wise
key with all its neighbors. One method that stands out is the one proposed in
[10], whereby every two nodes in the network share exactly one common key.
According to Bechit et al., deterministic schemes do not scale well with network
size |11] and are thus unsuitable for 6LoWPANs where scalability is a desirable
feature.

Under probabilistic schemes, a common key is present between two neighbors
with some probability. For instance, under the scheme documented in [12], a
small subset of k keys is chosen randomly out of a large key pool S. Every
network node exchanges the identifiers of its keys with its neighbors and, if a
common key exists, it is used as their session secret key. A more contemporary
probabilistic scheme is the one proposed in |L1]. Because of the probabilistic
nature of such schemes, many pairs of nodes do not share a common secret key
and thus, they try to find a secure routing path through their neighbors in order
establish it. If the connectivity of the network graph is not high, it is possible
that the network becomes partitioned into sub-networks and thus it may be
impossible to discover paths for key establishment between the two parts. Since
full network connectivity is not guaranteed, such schemes are unsuitable for
6LoWPANSs [8]. Additionally, if a single node is compromised a large subset of
the global key pool may be revealed to the attacker [11]. However, because keys
are pre-installed, revocation and replacement is not trivial.

2.2 Public Key Cryptography

Public key schemes are more demanding in terms of computation and energy
consumption than symmetric key schemes. However, Zhang and Varadharajan
argue that public key schemes provide a higher level of security, they scale better
with network size and they have lower storage requirements [7].

The classic Diffie Hellman algorithm uses keys of very large size and does not
provide any authentication mechanism, unless used alongside other protocols. It
is reported that the RSA encryption algorithm is viable in WSNs despite using
a large key [13-15]. The advantage of RSA over Diffie Hellman is that it can
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provide both key exchange and authentication with a single pair of keys (public-
private). However, the processes of key generation and encryption (for secret key
establishment) are still very slow and energy consuming.

Elliptic Curve Cryptography (ECC) is a very attractive solution for 6LoW-
PANSs, since key length is considerably smaller than that used by other traditional
PKC schemes. Consequently, according to NIST recommendations, the strength
of a 160-bit ECC key is equivalent to a 1024-bit RSA key [16].

Reportedly RSA and ECC cryptosystems with 1024-bits and 160-bits key size
respectively have been implemented on MICA motes and PKC is a feasible secu-
rity solution for sensor networks [13]. Additionally, software implementations of
RSA and ECC public-key algorithms exist for Atmel AVR Atmegal28 microcon-
trollers [14], which is a hardware platform commonly encountered in 6LoWPAN
deployments. It is observed that the 160-bits ECC is not only much faster than
the equivalent 1024-bits RSA, but it also uses less memory for data and code
hosting. The authors of that work extend their research by implementing RSA
key exchange with mutual authentication as well as ECDH with ECDSA, be-
tween two non-trusted parties [15]. They discuss a simplified and lightweight
Secure Sockets Layer (SSL) protocol in order to allow sensor nodes to perform
a handshake and subsequently to negotiate and establish a secret key. Energy
consumption for a full handshake with ECC is four times lower than with RSA.

Bianchi et al. introduce the asymmetric scheme of Identity Based Cryptogra-
phy (IBC), which is based on bilinear pairings on elliptic curves, as a promising
key exchange scheme for WSNs |17]. The IPC scheme was subsequently adopted
for TP-based WSNs [18]. The fundamental idea of IBC is that every string, like
the identity of each node (ID), can be used as a valid public key and thus the use
of large certificates for authentication is avoided. By using this approach, nodes
are able to establish a common secret key without any communication. However,
the main drawback stems from the fact that private keys are computed only by
the trusted authority (TA) by using the ID of the each node and its secret key.
If a particular key is leaked, the TA must pick a new secret key and start a
re-keying phase.

3 Implementation of the Key Exchange Technique

We implemented the ECDH key exchange technique for the Contiki OS, which
is a portable and lightweight operating system, specifically designed for use by
devices with limited resources. The Contiki OS supports a full TCP/IP network
stack, including support for a host of standard internet protocols, such as IPv6,
UDP, TCP, ICMP and HTTP. It also implements the 6LoWPAN adaptation
layer as defined in IETF’s Request For Comments (RFC) 4944 |5] and the IPv6
Routing Protocol for Low-Power and Lossy Networks (RPL) [9].

3.1 Link Layer Frame and Framer

Our proposed key exchange solution is implemented as a daemon process and un-
derpins the network stack’s secure link layer frame transmission by establishing
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secret keys for symmetric encryption between single-hop neighbor nodes. Con-
tiki’s implementation of IEEE 802.15.4 Medium Access Control (MAC) frame
generation and parsing does not currently support the security header specified
by the IEEE 802.15.4 standard. We have modified the respective code module
to support the generation and parsing of the security header in a standards-
compliant fashion. If the application determines that the MAC frame needs to
be secure (by defining the security bit in the frame control field), the security
header is appended to the address field of the MAC header, prior to the data
payload.
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Fig. 1. Flowchart for Secret Key Search, Frame Creation and Transmission

The link layer frame generation module accepts outgoing frames from the
layer 2 driver, adds the MAC header at the beginning of each frame and delivers
them to the radio transceiver’s driver. It also receives incoming frames, parses
and removes the MAC header and delivers the payload to the upper layers. Apart
from the frame structure, we also modified the link layer framer to fill the values
of the Auxiliary Security Header.

The link layer on the transmitting node queries our driver for the existence
of a shared key with the intended recipient, identified by the frame’s destination
MAC address. We search our Access Control List (ACL) for an entry matching
the destination MAC address and, if an entry exists, we return the established
key as shown in Fig. [l If the association is not in the ACL the frame is dropped
due to the lack of security guarantees and an internal transparent process for
key exchange starts.

Fig. [ illustrates a state transition diagram for our key exchange daemon
process. A device will spend most of its time in the Listening state. When the
network stack attempts to transmit a frame, the node will transition to the
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Searching for the secret key state. Depending on the outcome of the key search,
the daemon will either return a pointer to the shared key and revert to the
Listening state or it will move to the Starting Key Exchange state.

3.2 ECC Implementation

In the current work, we used source code from the ContikiECC project [19] in
order to implement the basic elliptic curve operations. The ContikiECC project
is a Contiki port of the TinyECC library [20]. It implements functions to handle
very large numbers as multiple 8-bit or 16-bit words and provides the basic
numerical operations for 8-bit and 16-bit microprocessors. Moreover, it provides
a number of elliptic curves of sizes 128, 160 and 192 bits by specifying each
curve’s parameters and base point. As discussed above, modern sensor hardware
platforms provide hardware acceleration for 128-bit AES encryption, hence our
decision to use a curve of 128 bits for the construction of secret keys.

From the ContikiECC library, we use the basic large number operations to
implement the ECC operations of point addition, point doubling and multipli-
cation by a scalar multiplier. ECC operations are based on the sliding window
method which provides more optimised characteristics in comparison to other
methods.
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In order to implement the Diffie Hellman algorithm over elliptic curves, each
node creates an ephemeral private key as a random 128-bit number. By multiply-
ing the private key with the elliptic curve’s base point, we compute the node’s
public key. For the establishment of a shared secret key between two parties,
each party multiplies its own private key with the public key received by the
node it is negotiating with. Public keys are transmitted as clear text. A new
private-public key pair is used for each negotiation.

For the generation of random numbers, we use Contiki’s library which provides
a platform-independent Application Programming Interface (API). Each plat-
form supported by Contiki provides a hardware-specific Random Number Gener-
ator (RNG) implementation, which underpins this API. For instance, the cc2430
and cc2530 System-on-Chip (SoC) platforms provide hardware-based RNG im-
plementations, while other platforms rely on software. In most cases, random
bits from the Radio Transceiver’s receive path are used to seed the RNG imple-
mentation.

3.3 Key Storage and Management

We construct a custom data structure (key association) that links the destination
node’s MAC address, the established secret key, key lifetime and the state of the
key exchange procedure. The information remains stored in the structure until
the shared key expires. After the shared secret has been established, the private-
public key pair used to generate it is erased.

Every node in the network has a statically pre-allocated ACL table for stor-
ing key association data structures. Each key association has a lifetime (in sec-
onds), which is set when the key establishment process is over. Every second,
the daemon periodically enters the Purging Expired Associations state (Fig. )
and decrements key lifetimes by one. When an entry’s lifetime reaches zero the
shared secret is erased, the MAC address is set to all zeros and the entry’s state
is reset. This releases the association, which can then be allocated for a new key
establishment in the future.

At the beginning of the key exchange process the sensor node allocates a free
ACL entry to store the new association in relation to the destination’s MAC
address. A special situation is the case where an entry is not completed but is
already allocated, which means that another key exchange process is in progress
(with different neighbor). By handling this situation we avoid the re-allocation
of an already allocated association and we can support multiple concurrent key
establishment negotiations.

3.4 The Key Exchange Process

The Diffie Hellman key exchange daemon is a background process, which remains
idle as long as a key exchange is not requested. The process is transparent and
application-independent.

The ECDH daemon is triggered if a secret key is requested by the network
stack but does not exist in the ACL table. In order to start the key exchange
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process, the daemon first allocates a free ACL entry. It then queries the node’s
Neighbor Discovery (ND) cache to determine the IPv6 address of the destination
node. If both steps are successful, the daemon computes the ECC private-public
key pair and sends a key exchange request to the destination node over UDP.

We build a simple protocol for the key exchange messages, defining the Pro-
tocol Version, Message Type and Payload, which actually is the sender’s public
key. Reception of a key exchange request also triggers the ECDH daemon. Upon
reception of an ECDH message, the receiving node first validates the protocol
version and message type, as illustrated in Fig. Bl

If the message type is Request, it means that the sender node is asking for key
exchange and sends its public key. Thus, the receiver allocates an ACL entry,
creates its own ephemeral ECC keys, sends a Reply message, computes the secret
shared key by performing elliptic curve point multiplication and sets the key
lifetime. In this case, the daemon enters the states of Generating Private/Public
Keys, Sending Public Key, Awaiting Response and Computing Secret Key in that
order, as shown in the state transition diagram in Fig. 2l On the other hand,
if the received message is a key exchange reply, the node searches to find the
related ACL association and computes the secret shared key by using the data
of the specific association entry and the received public key.

To overcome the situation of an ACL association being permanently allocated
because of indefinitely waiting for a key exchange reply message, we set a key-
exchange timeout by setting the association’s lifetime to a low value during the
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negotiation. After the temporary lifetime is initialized, it decreases periodically
similarly to the secret key lifetime. If the key-exchange attempt expires, the
allocated ACL entry is released and the daemon transitions from the Awaiting
Response state to Listening.

4 Experimental Setup, Results and Analysis

We evaluate the key exchange technique with the Cooja simulatoxﬁ, which is
distributed with the Contiki OS. Default parameters used for our experiments are
provided in Table[Il Some experiments use different configuration parameters, in
which case the modifications are clearly discussed in the text. Cooja can emulate
motes at the hardware level, allowing precise inspection of system behavior. The
sky platform is very commonly used and very well supported by Cooja and for
that reason it has been chosen for our experiments.

Table 1. Simulation Configuration

Parameter Value

Motes Tmote Sky
TX Range 50m

MAC Layer IEEE 802.15.4
Radio Access CSMA

Duty Cycling ContikiMAC
Max Neighbors 4

ACL Size 4

ACL Entry Lifetime 1000, 1500, ..., 2500 secs
Key Exchange Lifetime 50 seconds

4.1 Memory Requirements

The memory requirements of the key exchange technique are presented in
Table L1l For implementing the ECDH key exchange method we use the 16-
bit mode of ContikiECC’s libraries (line nn in the table). Moreover, we use the
Standards for Efficient Cryptography Group (SECG) standardized elliptic curve
SECP128R1, by defining curve parameters a and b and its base point. The ecdh
line relates to the ECDH daemon, which implements the ACL table, provides
the key management mechanism and handles the process of key exchange.

Results show that we spend about 7.7 Kb of the device’s ROM memory for
source code hosting and about 1.1 Kb of RAM for storing curve parameters and
ACL associations.

2 http://www.contiki-os.org/start.html#start-cooja
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Table 2. Memory and Code Footprints in Bytes

RAM

Code Module ROM Overall
data bss

nn 33712 0 0 3372

ecc 2494 0 676 3170

ecdh 1477 10 392 1879

secpl128rl 402 0 0 402

Total 7745 10 1068 8823

4.2 Latency, Average Energy Consumption and Network Scalability

The first and simplest experiment consists of only two nodes that communi-
cate for a long time period so that many secret key re-establishments can take
place. This experiment investigates energy consumption and computation times
required for the calculation of public and secret shared keys as well as for a full
key exchange process.

In this example, key exchange always begins with Alice, while Bob is always
the node receiving Alice’s request and has to reply. The communication is per-
formed properly as long as the lifetime of the secret key has not reached the
value of zero. When the secret key expires a new secret key must be established
for further communication.

The time needed for the creation of the public key and the computation of
the secret key, as well as the overall time for the key exchange process is given
in Table Table presents the energy Alice and Bob consume to create
their public key and the shared secret key. It also presents the overall energy
consumption for the full key exchange process.

To estimate energy consumption, we use Contiki’s energest module. We
measure the time each node spent in each of the following three states: i) Micro-
Controller Unit (MCU) active, ii) RF listening / receiving (RX), iii) RF trans-
mitting (TX). Since we are simulating sky motes, we then converted these time

Table 3. Average Time and Energy Consumption of the ECDH Key Exchange Process

(a) Average Time Consumption (seconds)

Public key Secret key Key Exchange Process
Alice 8.560 8.547 25.586
Bob 8.457 8.416 16.873

(b) Average Energy Consumption (mJ)

Key Exchange Process
MCU MCU + TX + RX
Alice 47.176 47.226 97.021 113.224
Bob 47.165 47.171 94.353 100.758

Public key  Secret Key
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values to estimated energy consumption based on typical datasheet power levels
at an operating voltage of 3.0V. Energy spent for the creation of the public and
the secret key is calculated based solely on microcontroller activity. The total for
the key exchange also takes into account consumption attributed to the radio
transceiver.

In terms of network scalability, default values configure ACLs to hold a max-
imum of four concurrent key associations. Each increase to the maximum ACL
size by one increases the table’s memory footprint by 84 bytes, as illustrated in
Fig. [l With the configuration used for our experiments, we could build working
firmware with a table size of up to 36 entries before we started getting linker
€rTors.

This does not mean that the network cannot support more than 36 nodes,
but that each sensor can support only up to 36 different secret keys at any time.
Bearing in mind that keys are only generated between single-hop neighbors,
results demonstrate that it is possible to build very dense networks (each node
has 30 or more neighbors) without problems.
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Fig. 4. Scalability with Network Density

4.3 Energy Consumption and Key Lifetime

In this experiment we build a network of ten nodes, where one of them acts as
a simple UDP sink node (server) and the rest act as clients. Four of the client
nodes are out of the server’s transmission range and thus the communication
between them and the server is conducted through intermediate routers.

We perform multiple simulation runs, starting with a key lifetime value of
1000 seconds and for each consecutive run the value increases by 500 seconds.
Simulations run for a period of two hours so that the keys expire multiple times
and many key negotiations take place.
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Fig. Bl presents the energy consumption of each network device, for a de-
ployment without key exchange support and for key lifetime values of 1000
and 2500 seconds. The bars in the graph show total energy consumption, with
bar portions illustrating consumption attributed to micro-processor activity, RF
listening /reception and RF transmission.

Both the microcontroller’s and the overall energy consumption of the server
device (node ID: 0) is very high in contrast to the estimated energy consumption
of the other devices. This happens because the server node has more connections
and is required to establish multiple secret keys. Transmission at the server
consumes the smallest amount of energy in contrast to the other nodes and
reception is the highest. This is due to the functionalities the node implements,
as the server transmits only its public key during the key exchange process, while
the other nodes transmit their keys as well as application layer data.

Nodes acting as internal routers (node IDs 6-9) consume a large amount of
energy in relation to the remaining nodes. The energy consumed by its micro-
processor was spent not only to establish a secret key with the server, but also
with the client nodes it serves. Similarly, the energy consumed by transmission is
due to sending its own application layer messages as well as routing application
layer messages towards the server.

16 Without ECDH 16 Lifetime:1000 16 Lifetime: 2500
RX mTX = MCU RX mTX mMCU RX mTX mMCU
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Fig. 5. Average Energy Consumption without ECHD and with ECDH for Key Lifetime
Values of 1000 and 2500 Seconds

Results presented in Fig. [6] show that energy consumed by node micro-
processors decreases as key lifetime increases. This happens because the keys
are valid for a longer time frame and thus, fewer key negotiations are needed.
The energy consumption of the server’s receiver is fluctuating but remains high,
because while the number of the key exchanges decreases, the number of received
messages increases and thus the receiver remains busy.

The energy spent by router MCU is lower than the server’s MCU energy
consumption and higher than the client’s average MCU consumption, as it is
related to the number of the key exchanges it performs. However, as key lifetime
increases, MCU energy consumption decreases.

It is observed that the average energy consumption of the micro-processor of
the clients decreases as key lifetime increases. The same phenomenon applies
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to the energy consumed during transmission. However, consumption due to re-

ception increases at the key lifetime of 1500 seconds, for the specific network
setup.

4.4 Key Lifetime and Packet Loss

Outgoing packets are dropped at layer 2 when a secret key does not exist in
the ACL table and in the case that the key exchange process is in progress.
By dropping the outgoing packets the overall performance of the network is
affected. However, the existence of the secret key is determined by the lifetime
value, which defines whether an entry in the ACL table is valid or not.

To assess how the lifetime affects the network performance we repeat the pre-
vious simulations and measure packet loss, with results for various key lifetime
values illustrated in Fig. [l When key lifetime is set at 500 seconds the packets
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lost due to the lack of the key are more than 22 percent of the outgoing packets.
This happens because key lifetime is short and nodes need to re-negotiate keys
relatively frequently. The packet-loss ratio decreases significantly as the key life-
time increases. When the lifetime is set to 1000 and 1500 the packet-loss of the
networks is 13% and 12% respectively. Eventually, when the lifetime is set to
2000 and 2500 seconds the packet-loss gets lower than 10% and 5% respectively.

5 Conclusions and Further Work

We developed a software implementation of the ECDH key exchange algorithm
in order to assess its applicability and viability for 6LoWPANs and to examine
its impact on network performance. Our method performs key exchange between
two parties, but it also handles the ACL table and manages the established secret
keys. Our implementation requires approximately 7.7 KBytes of code memory
when built with the MSP430 GCC toolchain and used with Tmote Sky devices.
This indicates that the implementation is somewhat too large for legacy sensor
devices. However, contemporary devices incorporate considerably larger flash
storage (e.g. 512KB) and 32-bit MCUs, allowing a significantly extended memory
space. This alleviates address space restrictions posed by the original MSP430
and subsequent MSP430X architectures.

Average energy consumption attributed to microcontroller activity for the
computation of the public and the secret key (elliptic curve 128-bit scalar mul-
tiplication) is less than 48 mJ, and about 96 mJ for the entire key exchange
negotiation. Total energy consumption is estimated to be approximately 115 mJ,
with the increase being primarily attributed to the radio transceiver in listening
and frame reception modes.

By simulating a larger network, we investigated the impact of the key lifetime
to the overall energy consumption, network performance and scalability. We
observe that packet loss decreases as key lifetime increases. This is due to two
factors: 1) In our current implementation, lack of a key with a neighbor results
in an outgoing packet getting dropped and ii) Key negotiation itself is time-
consuming, occasionally leading to further losses. Packet delivery ratio can be
improved by pro-actively triggering the establishment of a new key between two
neighbors before the existing key times out.

Our scalability investigation reveals that each network node is able to keep
up to 36 distinct keys in its ACL table. The approach scales well even in very
dense networks; this number is sufficiently large if we keep in mind that each
node only needs to establish keys with its single-hop neighbors.

The current solution is unauthenticated and is thus vulnerable to man-in-the-
middle attacks, similar to the original Diffie Hellman key exchange. To address
this, a method to authenticate the two parties before key negotiation would
be required, with the Elliptic Curve DSA (ECDSA) algorithm posing as an
attractive candidate. This is left as future work.

In terms of the time required to negotiate a shared secret, the algorithm can
be further optimised. As part of our future work, we will adjust the ECDH dae-
mon to generate Public-Private key pairs pro-actively, during node idle periods,
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instead of on-demand when a new key request is received. As a result, the only
computationally intensive operation that will need to be conducted during key
negotiation will be the calculation of the shared secret, which can take place in
parallel at the two participating parties. We estimate that this will reduce the
total negotiation time by approximately 60%.

In the future, ECC hardware acceleration can be employed to make the ap-
proach more viable. Hardware acceleration can have a host of positive effects:
i) It can decrease code footprint, since it would mean that the implementation
of elliptic curve calculations would no longer need to be included in firmware,
ii) Key negotiation will be considerably faster, since ECC calculations will not
need to be performed by software, iii) Assuming energy-efficient acceleration
hardware, total energy consumption for the negotiation will be lower.

On contemporary sensor devices, encryption of link-layer frames is conducted
by AES co-processors and is generally considered to be fast and energy-efficient.
However, it is impossible to simulate hardware acceleration within the Cooja
simulator. Providing a software AES implementation would have had an obfus-
cating effect on all metrics under investigation and since this work focused on
key negotiation, we deliberately removed layer two encryption functionality in
its entirety. As part of our future plans, we will evaluate the method in a real
testbed with layer two encryption enabled and performed by hardware. This will
allow us to draw conclusions on the viability of the complete solution.
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