
SAMPAC: Socially-Aware collaborative
Multi-Party Access Control

Panagiotis Ilia
FORTH

Heraklion, Greece
pilia@ics.forth.gr

Barbara Carminati
University of Insubria

Varese, Italy
barbara.carminati@uninsubria.it

Elena Ferrari
University of Insubria

Varese, Italy
elena.ferrari@uninsubria.it

Paraskevi Fragopoulou
FORTH

Heraklion, Greece
fragopou@ics.forth.gr

Sotiris Ioannidis
FORTH

Heraklion, Greece
sotiris@ics.forth.gr

ABSTRACT
According to the current design of content sharing services,
such as Online Social Networks (OSNs), typically (i) the
service provider has unrestricted access to the uploaded re-
sources and (ii) only the user uploading the resource is al-
lowed to define access control permissions over it. This re-
sults in a lack of control from other users that are associ-
ated, in some way, with that resource. To cope with these
issues, in this paper, we propose a privacy-preserving system
that allows users to upload their resources encrypted, and
we design a collaborative multi-party access control model
allowing all the users related to a resource to participate
in the specification of the access control policy. Our model
employs a threshold-based secret sharing scheme, and by ex-
ploiting users’ social relationships, sets the trusted friends of
the associated users responsible to partially enforce the col-
lective policy. Through replication of the secret shares and
delegation of the access control enforcement role, our model
ensures that resources are timely available when requested.
Finally, our experiments demonstrate that the performance
overhead of our model is minimal and that it does not sig-
nificantly affect user experience.

1. INTRODUCTION
The popularity of content sharing services and Online So-

cial Networks (OSNs) has increased dramatically during the
last years. This increasing number of participants, and the
volume and nature of the data available online, raises alarm
regarding user privacy, especially after Snowden’s recent rev-
elation of large-scale surveillance programs [21].

In general, users can preserve their privacy by controlling
the way resources are distributed in the network through

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CODASPY’17, March 22 - 24, 2017, Scottsdale, AZ, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4523-1/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3029806.3029834

the available privacy settings. However, despite the efforts
by service providers and the research community to design
effective access control mechanisms, users typically have lim-
ited control on resources published by others. The current
mechanisms consider the uploader of a resource as owner,
but not the users related to that resource as co-owners. This
results in a lack of control from those users that are associ-
ated, in some way, with that resource. A notable example
is that of photo management in Facebook as users are able
to avoid being tagged in a photo [1], in order to prevent it
from being accessible through their profile, but they cannot
state how this photo has to be shared in the network.

Typically, the users associated with a resource are exposed
to the access control decision of the data owner (i.e., the up-
loader), which may not be privacy sensitive. Several studies
(e.g., [3, 13, 18, 20, 22]) demonstrated that a large num-
ber of users are slightly concerned about privacy, that they
are possibly not aware of the implications that stem from
disclosing sensitive information, and even that their privacy
settings do not always reflect their privacy concerns, which
emphasizes the problem of relying entirely on the data owner
for controlling access to collective resources. To deal with
this problem, several works (e.g., [7, 14, 26, 28]) propose ap-
proaches for collective privacy management and for solving
privacy conflicts in multi-user environments. However, these
approaches either fully rely on the service provider to solve
the conflicts and enforce the access control policy, or they
assume that the data owner and the associated users play in
an honest way, that is, without the intention to enforce their
own preferences over those of the other associated users.

Importantly, the existing approaches for collective privacy
management consider service providers as fully trusted and
allow them full access on user data. However, in reality, a
service provider having access on user data can easily ana-
lyze them, collect information regarding users and even infer
information that has not been previously published online.
Furthermore, in some cases, user personal information and
data can possibly end up to third parties, such as adver-
tisers and cloud storage services. For example, Instagram
utilizes Amazon storage and CDN infrastructure for storing
and distributing user photos [2]. Thus, it is a realistic threat
model to consider a service provider as honest but curious.

In this sense, several works in the literature present ap-

http://dx.doi.org/10.1145/3029806.3029834

proaches that prevent service providers from accessing user
data, by encrypting or moving the data to the cloud (e.g., [6,
9, 24, 29]). Also, multiple works propose decentralized ar-
chitectures (e.g., [5, 8, 11, 17]) for allowing users to avoid
centralized control. But, even if these approaches can pro-
tect users from service providers, they do not allow collective
privacy management, as they do not take into account the
privacy concerns of all the users associated with a resource.

In general, user privacy can be effectively protected if
users are able to determine and control who can access their
data. Thus, we consider that the following should be met:

i The access control policy of a collective resource should
reflect the privacy preferences of all the users associated
with that resource. None of the users should be able to
enforce its own preferences over those of the other users.

ii Users should be able to protect their data from being
accessed by the service provider and third parties. This
can be typically achieved by allowing users to encrypt
their data before uploading it online.

In order to protect user privacy, in this paper, we design
a collaborative multi-party access control model that allows
all the users related to a resource to participate on the spec-
ification of the access control policy, by setting their own
rules. In particular, to cope with the limitations of previous
works, we assume a threat model where the data owner is
honest, but it might not be privacy sensitive. That is, the
data owner might not maliciously intent to violate the pri-
vacy concerns of the associated users (i.e., co-owners), but
violations could possibly occur due to his/her privacy in-
sensitivity. Furthermore, we assume that co-owners might
have the intention, and possibly try, to enforce their own
preferences over those of the other associated users.1

For protecting user data from being accessed and pro-
cessed by the service provider and third parties, we design a
cryptography-based solution, according to which, resources
have to be encrypted before being uploaded online.2 In this
sense, the provider is considered honest but curious, by the
means that it will correctly perform the protocol, such as
storing and providing the resources when requested, but it
will probably try to infer user information from the managed
resources. Thus, even if the provider is trusted, we avoid in-
volving it in the process of access control enforcement, as this
may allow him to infer user information, such as resource
co-ownerships, users privacy preferences, and any other in-
formation that stem from the type and metadata of each
resource, even if those resources are encrypted.

The encryption scheme proposed in this paper is defined
such that each key used to encrypt a resource is protected
by a secret, which in turn is generated by exploiting a (k,n)-
threshold secret sharing scheme [25]. This allows us to asso-
ciate a set of n shares to each secret. To deploy collaborative
access control enforcement for a given resource o, we dis-
tribute the shares generated from the secret to the co-owners
1We do not consider cases of arbitrarily malicious users/co-
owners that exhibit entirely non-conventional behavior (e.g.,
using secondary channels to illegitimately disclose non-
encrypted data or encryption keys).
2The proposed model exploits users social relationships for
enabling collaborative multi-party access control. Although
the model is generic and suitable for online resources of any
type, in this paper we give emphasis on its employment in
the context of OSNs.

Uploader (u)

OSN

KMS

2a

2b

1 Initialize key generation

Encryption key

Upload encrypted data object

Co-Owners
(CO)

Distribution of secret shares to COs

[SS] j [SS] j [SS] j

[SS] ij [SS] ij [SS] ij

Shareholders
(SH)

AR

1

Request(o)

2

Enc(o)EK

Enc(EK)SK

Request secret share SSij 3

3a

3b 3b 3b

Figure 1: Overview of the proposed mechanism.

of o. The shares are then further selectively distributed by
co-owners to their trusted contacts (called shareholders).

For accessing a resource, a requester needs to contact dif-
ferent shareholders for collecting a number of shares needed
for reconstructing the secret (i.e., greater than a threshold
k), and retrieving the encryption key. To make a share-
holder able to determine whether to release or not the re-
ceived share to a requester, each shareholder receives from
the co-owner a share provision rule (SPR) that states the
co-owner’s preferences in the distribution of its share. If a
requester succeeds in retrieving the needed number of shares
to reconstruct the secret, it means that at least a threshold
number of shareholders have positively evaluated the access
control rules stated by the corresponding co-owners. In this
way, users do not need to rely on the service provider for
enforcing access control, as their trusted contacts are being
set responsible for enforcing the collective policy.

2. OVERVIEW OF THE MECHANISM
In this work we consider the uploader of a data object o as

data owner (DO) and the users associated with that object
as stakeholders (STs). Both the data owner and stakehold-
ers are considered co-owners (COs) of o and should collabo-
rate to determine how the object is released in the network.
Furthermore, for protecting co-owners privacy from the ser-
vice provider and third parties we consider that data objects
should be encrypted before being uploaded online.

In order to enable collective privacy management, we de-
sign a mechanism that allows all the co-owners of the data
object o to specify their access control preferences for o. An
overview of the basic mechanism is presented in Figure 1.

At first, we assume the existence of a trusted Key Man-
agement Service (KMS) that allows the co-owners to collab-
oratively generate a pair of keys: an encryption and a secret
key. The encryption key is then used by the data owner for
encrypting the object before uploading it online. The secret
key, which is used for protecting the encryption key, is gener-
ated by exploiting a (k,n)-threshold secret sharing scheme.
The shares generated from the secret key are selectively dis-
tributed to a set of trusted contacts of the co-owners, which
are thus being set responsible to enforce access control.

It is relevant to note that the way the shares are gener-

ated and distributed to shareholders impacts the resource’s
sharing strategy. In general, as it will be discussed in Sec-
tion 3, our system supports two different strategies, namely
the common pool and the layered strategy. These two strate-
gies have different characteristics and thus, each strategy is
considered more suitable for particular types of data objects.

Furthermore, as presented in Figure 1, a user that wishes
to access a data object o has to retrieve the encrypted object
from the service provider and then contact the shareholders
of o for retrieving the required number of secret shares, for
reconstructing the secret and decrypting the encryption key.

Two important components of the proposed system are
the Key Management Service (KMS) and the content shar-
ing service (e.g., OSN). The role of the KMS, which is con-
sidered as a trusted service, is to support co-owners on speci-
fying the sensitivity of the object and generating the encryp-
tion and secret keys, while ensuring that the privacy prefer-
ences of all the co-owners are taken into consideration. The
data objects are not being revealed to the KMS, but only
some metadata, such as their type and sensitivity. Impor-
tantly, the KMS is an independent service and should not
be managed by the content sharing service provider. The
role of the KMS can be played by trusted entities, such as
reputable companies, universities, internet authorities etc.

Moreover, as already stated, the proposed model does not
allow service providers to access user data, as data objects
are uploaded in an encrypted form. The main roles of the
service provider, which has knowledge of users relationships
and the underlying social graph, is to provide information re-
garding relationships (in the form of relationship certificates)
when requested, to store and provide the encrypted objects,
and to provide information about the objects’ shareholders.
In general, we assume that users will create a private/public
key pair during their registration, and that they will sign
a “relationship certificate” during the establishment of each
new relationship. These public keys and relationships will be
stored by the service provider, in order to be retrievable by
other users. Even if naturally the role of the service provider
is assumed to be played by online social networks, our model
can allow any entity that has relationship information and
a users social graph, to be considered as a service provider.

Also, even though the KMS is considered trusted, we de-
cided to only utilize it for supporting co-owners on specifying
the sensitivity and creating the keys/shares, and not for any
other core functionality (e.g., access control enforcement).
The main reason behind this decision, which influenced our
design, is that we wish a more generic scheme that is not
highly dependent on the KMS or the service provider.

At this point, it is important to clarify that in this work we
do not try to negatively impact the current design and use of
the existing social-based services (content sharing services,
online social networks etc.) but rather, to propose an alter-
native; a generic, privacy preserving system. According to
our secure-by-design system architecture, users are not sim-
ply the “clients” of the service, but they actively contribute
on achieving a high level of privacy, which after all, benefits
their contacts, other users, and eventually the community.

2.1 Basic access control model
As already stated, in order to enforce collaborative access

control we adopt a (k,n)-threshold secret sharing scheme.
According to our system design a set of shares n, that is de-
rived from the secret, is distributed to a set of the co-owners

contacts. A requester AR can access an object only if he/she
can reconstruct the secret, by collecting a number of shares
greater than k. The number of shares needed to obtain the
secret as well as who are the shareholders (that is, those
users that receive and manage the shares) is determined by
considering the requirements of all the co-owners.

More precisely, each co-owner specifies its set of selection
rules, by which it chooses a subset of its direct contacts as
shareholders. More formally, the selection rules defined by a
user u are specified following the paradigm of relationship-
based access control (ReBAC) [10, 12], which is emerging
in the context of information sharing in OSNs. According
to this model, each social relationship is characterized by:
(i) a relationship type type ∈ RT , where RT is the set of
types supported by the service provider; (ii) a trust value
t val ∈ [0,1], denoting the strength of the relationship. A
selection rule is defined as: ⟨u; [(type, t val)]⟩, where type ∈
RT and t val ∈ [0,1], stating that a node to be considered
as shareholder by u has to be one of its direct contact with
a relationship of type type, with minimum trust t val.

Furthermore, as already stated, objects should be up-
loaded in an encrypted format. At this purpose, we assume
the existence of a trusted Key Management Service (KMS)
that allows co-owners to collaborate for creating the encryp-
tion and secret keys. In order to encrypt a resource, each co-
owner COj submits to the KMS two random values (EKj ,
SKj) that are used for generating two symmetric keys: the
encryption key (EK) and the secret key (SK), as it will be
discussed in detail Section 4.2. The encryption key is dis-
tributed to all the co-owners and it is used by the uploader
for encrypting o. With this key each co-owner is able to ver-
ify that the uploaded object has been encrypted properly.
In contrast, SK is not distributed to the co-owners, but it
is used by the KMS for encrypting EK, i.e., Enc(EK)SK ,3

which will be uploaded online by the data owner along with
the encrypted object. Moreover, the KMS creates a set of
shares (SS) from the secret SK, which are distributed to the
co-owners of the object, such that each co-owner receives a
unique subset of them to be transmitted to its shareholders.

The way the shares are generated and distributed to share-
holders is defined according to the Access Control Strategy
(ACS) of the object. The proposed system supports two dif-
ferent strategies, namely the common pool and the layered
strategy, which will be discussed in detail in Section 3. The
KMS determines which is the most appropriate strategy to
be followed for each object, with regards to the characteris-
tics of the object. In general, the best strategy for o is deter-
mined by considering the sensitivity level S and the type OT
of the object, and also, the total number of its co-owners.
The sensitivity level of a data object is a value introduced
to measure the relevance and importance of a given object
for its co-owners. We recognize that this is very subjective,
as each co-owner might have different preferred sensitivity
levels for an object. As such, all the co-owners have to par-
ticipate in the collaborative definition of S by submitting to
the KMS their preferred sensitivity levels. Then, S is cho-
sen as the maximum between the average value computed
on the sensitivity levels argued by the co-owners (SCO) and
the value submitted by the data owner (SDO).

According to both strategies, each co-owner delegates its
shares to its trusted shareholders (SHs). Each shareholder

3Hereafter, we denote with Enc(M)K the encryption of
message M with the key K.

along with a share also receives a share provision rule (SPR)
that specifies the way shareholders should enforce o’s pol-
icy, by outlining the requirements that should be satisfied
by a requester AR for successfully collecting the delegated
shares. Similarly to selection rules, SPRs are specified ac-
cording to the ReBAC paradigm, as ⟨u; [(type, t val, dist)]⟩,
posing conditions on type, the trust value (i.e., greater than
t val) and the distance (i.e., less than dist) of the relation-
ships that must exist between the requesting user AR and
the co-owners of the requested object.4 An example SPR
that is specified and delegated by Alice to her shareholders
is given by ⟨Alice, [(co−workers,⋆,2)]⟩. Also, more generic
rules, such as ⟨co− owner, [(family,⋆,1)]⟩ which allows ev-
ery co-owner’s family members to receive the share, or even
complex composite rules, can be supported.

A requester AR who wishes to access o, requests the object
to the service provider, which provides the encrypted object
Enc(o)EK , the protected encryption key Enc(EK)SK and
a list that contains the identifiers of o’s shareholders. Then,
AR contacts the shareholders for requesting each individ-
ual share. In order to obtain a share, the requester has
to prove that he/she has relationships that satisfy the con-
straints specified by co-owners’ SPRs. At this purpose, the
requester can retrieve from the service provider the set of
relationship certificates that prove the existence of relation-
ships that satisfy SPRs, and provide them to shareholders
for validation. This design, in a sense, makes it easier for a
well-connected requester, which has multiple indirect rela-
tionship connections with the co-owners, to find a path that
satisfies the constraints of SPRs.

3. ACCESS CONTROL STRATEGIES
The proposed system can support two different access con-

trol strategies; the common pool and the layered strategy.
The strategy followed for an object o determines the pro-
cesses needed by a requester for being granted access to o.

3.1 Common pool approach
According to this approach, the Key Management Service

employs a (k,n)-threshold secret sharing scheme to gener-
ate a number of non-distinguishable shares from the secret.
These shares are distributed to the co-owners of the object
(i) uniformly, or almost uniformly, or (ii) according to each
co-owner’s weight, denoted as δ. The process followed for
the creation of shares ensures that the number of shares pro-
vided to each co-owner does not exceed the number of its
shareholders. As such, the number of the created shares de-
pends on the number of co-owners and the number of their
contacts that can be selected as shareholders, according to
co-owners’ selection rules. At first , each co-owner COj de-
termines the number of its contacts that satisfy its selection
rules, say βj , and informs the KMS. Then, for a given ob-
ject o that has to be distributed according to the common

4In general, an indirect relationship of type t between two
users is defined as a path of relationship of type t connecting
them. In this case, the distance is measured as the number
of hops in the path, whereas the trust value is seen as the
result of aggregation of all the trust values associated with
each single traversed relationship. Literature proposes sev-
eral algorithms for trust computation on indirect relation-
ships. In this paper, for simplicity, we compute the overall
trust as the average of the trust values that are associated
with edges in the connecting path.

pool approach and under the uniform distribution, the KMS
selects a number λ, such that λ ≤ βj , and generates a set of
n = λ × ∣CO∣ shares, and distributes a subset of λ shares to
each co-owner. If the selection rule of a given co-owner COj

is so strict that the corresponding βj value decreases too
much the number λ, the KMS chooses λ to satisfy most of
the other co-owners and generates λ shares for them. Then
it sends exactly βj shares to COj (where, βj < λ). Similarly,
for the non-uniform distribution the total number of shares
is n = λ× ∣CO∣, with the difference that the number of shares
for each single co-owner COj depends on its relevance, that
is, nj = δj × n, where nj < k ≤ βj . After receiving the
shares, each co-owner distributes them to its shareholders
along with the corresponding share provision rule SPR. In
the case where the number of received shares (nj) is smaller
than the number of a co-owner’s potential shareholders (βj),
the co-owner is able to distribute the same share to multiple
shareholders in order to achieve replication of its shares and
thus, to increase the availability of shares in the system.

Another relevant parameter defined in the common pool
approach is the value of the threshold k, denoting the num-
ber of shares required for key reconstruction. Here, the idea
is to bind the value of k to the sensitivity level of the object.
Therefore, the number of shares k required for key recon-
struction is proportional to the object’s sensitivity level S,
with regards to the total number of shares n, such that:
k ← ⌈S × n⌉, where n = λ × ∣CO∣ −∑∣CO∣

j=1 (λ − βj) if βj < λ.

3.2 Layered approach
This access control strategy has been designed to give

more control to co-owners. The basic idea behind this strat-
egy is to have two-layers of shares, which we refer to as mas-
ter shares and subshares, respectively. The master shares
MSs are defined according to a (k,n)-threshold secret shar-
ing scheme such that n master shares, where n = ∣CO∣, are
directly derived from the secret, and each co-owner receives
just a single master share. The threshold k (called top-layer
threshold), which represents the number of master shares
needed to reconstruct the secret, is set to k ← ⌈S × n⌉,
n = ∣CO∣, where S ∈ (0,1] is the sensitivity level associated
with the object to which the secret corresponds.

The second layer of shares, i.e., subshares, are generated
directly by each co-owner. Again, each co-owner exploits a
(k,n)-threshold secret sharing scheme in order to derive the
subshares from the received master share, and distributes
them to its shareholders. The number of subshares for each
co-owner and the corresponding sub-threshold µj , are de-
fined exclusively by the particular co-owner that holds the
specific master from which the subshares are derived.5

In the layered approach, the requester AR contacts the
shareholders of a particular CO and tries to collect enough
subshares for reconstructing this co-owner’s master. Then,
the requester contacts the shareholders of another co-owner
to collect its subshares, for reconstructing another master.
AR is able to reconstruct the secret, only if he has managed
to reconstruct enough master shares, according to the top-

5In general, we consider that the number of subshares cre-
ated by a co-owner depends on the number of its sharehold-
ers, according to its selection rules. Also, the sub-threshold
can be defined according to the CO’s preferred sensitivity
level Sj . However, the system does not restrict COs from
choosing different parameters for the creation of subshares.

layer threshold k. This implies that AR has to be authorized
by at least k co-owners for being allowed to access o.

3.3 Selection of the best ACS
The shares created according to the common pool ap-

proach contribute equally on the policy enforcement. This
property bears the common pool more simple than the lay-
ered approach, as it requires low effort by the requester for
collecting the shares and reconstructing the secret. Also, it
allows us to support hierarchy, by distributing the shares
non-uniformly to the co-owners. In this case, the shares are
distributed according to the weight δj of each co-owner COj

and thus, particular co-owners (e.g., the uploader), can be
given more influence on the access control decision for o.

On the other hand, it can be argued that the layered ap-
proach can preserve fairness, as master shares are equally
weighted and thus, k-out-of-n co-owners should agree for
approving access to the object. Also, this approach allows
co-owners to have extended control on the object, as each
co-owner is responsible for the specification of its preferred
number of subshares and the corresponding sub-threshold.

In general, the KMS determines the best strategy for an
object o by considering the sensitivity level S and type OT
of o, and the total number of its co-owners. For instance,
objects of type ‘document’ can be better handled by the
common pool which can support hierarchies, while ‘photo’
objects are better handled by the layered approach. Fur-
thermore, the layered approach is most suitable for objects
having a large number of shares (i.e., large number of co-
owners, high sensitivity level) as it exhibits lower perfor-
mance overhead than the common pool approach.

4. DETAILED SYSTEM DESIGN
In the previous sections we presented an overview of the

proposed system and the basic access control model. Ac-
cording to this basic design, some shares and objects may
not be always timely available when requested, as users (co-
owners and shareholders) may not be online during the ob-
ject’s upload and request time. In such a case, the requester
may has to wait for some particular shareholders to become
available, which can delay access to the object. In this sec-
tion, we revise and extend our basic design in order to ensure
that the great majority of shares will be timely available
when requested. In particular, in this section we present in
detail our revised design and the processes followed for up-
loading an object and distributing the shares to sharehold-
ers, and for collecting the shares and accessing the object.

4.1 Increasing availability
According to the basic system design, during the object’s

upload phase each co-owner specifies its preferred sensitivity
level Sj for the object, the number of its contacts qualified
for being chosen as shareholders βj , according to its selection
rules, and two values that will be used by the KMS for gen-
erating the keys. Also, as previously stated, the co-owners
receive the shares created by the KMS and distribute them
to their shareholders. For accessing an object, the requester
contacts the shareholders of the object for proving that he
satisfies the SPRs, in order to collect the shares. This design
has two availability issues: (i) some co-owners of the object
may not be online during the object’s upload phase to spec-
ify their preferred values and to distribute the shares, and

(ii) some shareholders may not be online during the object’s
accessing time, when a requester tries to collect the shares.

In order to overcome co-owners’ availability issues, we as-
sume that each user is allowed to provide to the KMS a set
of predefined sensitivity levels and sets of its shareholders’
identifiers, which have been chosen according to the selection
rules. If a co-owner is unavailable during the upload phase of
a new object, the KMS determines whether this object can
be associated with this co-owner’s predefined sensitivity lev-
els and sets of shareholders. Then, the KMS generates the
shares normally and distributes the shares of the unavail-
able co-owner directly to its predefined shareholders. This
process is further described in Algorithm 1 (lines 15, 39).

Furthermore, in order to overcome the issues regarding the
availability of shares, we allow share replication and further
delegation of the access control enforcement to co-owners’
indirect contacts (i.e., shareholders’ trusted contacts). More
precisely, as previously stated, each co-owner specifies with
its selection rules the number of its potential shareholders βj
and the KMS creates λ shares for each co-owner. Therefore,
by specifically choosing λ and βj values, such that λ ≪ βj ,
the model allows co-owners to provide each share to multiple
shareholders, for achieving replication of the shares.

Additionally, according to the revised model, we consider
that the co-owners of an object can allow their sharehold-
ers to further delegate access control enforcement to their
trusted contacts. In order to allow this delegation, the co-
owners set a special flag in the share provision rule speci-
fying that the share can be further delegated. That is, a
shareholder before becoming unavailable is able to set it’s
own trusted contacts responsible for managing the share, in
order to preserve the availability of the share in the sys-
tem. A requirement for this delegation is that the selection
rules of the shareholder should be at least as strict as the
share provision rule of the co-owner. In the case of further
delegation, a shareholder includes its selected contacts’ iden-
tifiers in the list containing the object’s shareholders, which
is stored by the service provider for being provided to the re-
questers. Also, when a shareholder becomes again available,
it can choose to revoke its previously granted delegations by
removing its contacts’ identifiers from the list.

4.2 Object upload phase
In the following we describe in detail the process followed

by the KMS and the co-owners during the object’s upload
phase. This process is initiated by the data owner who iden-
tifies and submits to the KMS the stakeholders’ identifiers,
as presented in Algorithm 1. Recall that we assume an hon-
est but possibly privacy insensitive data owner, which does
not maliciously intent to violate co-owners’ privacy. There-
fore, the data owner does not intentionally avoid specifying
co-owners’ identifiers for preventing them from contributing
to the specification of the access control policy.

At the very first time, each co-owner initializes its access
control settings to specify its preferred sensitivity levels and
its selection and share provision rules. Then, for every new
object to be uploaded, the following steps take place.

4.2.1 Generation of keys and shares
The process followed by the KMS for generating the keys

and shares is presented in Algorithm 1. Initially, the KMS
receives by the uploader u the object’s identifier and type
(IDo, OTo), the identifiers of the stakeholders (IDST), as

Algorithm 1 Process followed by the KMS during the ob-
ject’s upload phase.

1: Inputs:
IDo,OT ,[IDST],Su, βu,EKu, SKu

2: Initialize:
SCO, SDO ← Su, EK ← EKu, SK ← SKu

N ← size [IDST], NCO ← N + 1
3: procedure DetermineStrategy(OT, S, NCO)
4: if NCO ≥ 6 or So ≥ 0.8 then
5: Return layered
6: else Return common pool
7: end if
8: end procedure
9: Process:

10: for j = 1 to N do
11: IDo ↣ STj

12: if STj is online then
13: Sj , EKj , SKj , βj ← STj

14: EK ← EK ⊕EKj , SK ← SK ⊕ SKj

15: else Sj , βj , [IDSH]j ⇐ predefined
16: end if
17: SCO ← SCO + Sj

18: end for
19: SCO ← SCO/NCO, So ←max (SDO, SCO)
20: Enc(EK)SK ← Encrypt(EK)SK

21: ACS ⇐DetermineStrategy(OT, S, NCO)
22: n, k⇐ (ACS, S, NCO)
23: [SS]← ShareCreation (SK, n, k)
24: if ACS ⇒ layered then
25: nj ← 1
26: else if ACS ⇒ common pool then
27: if n = λ ×NCO then
28: nj ← λ
29: else nj ←min(λ,βj)
30: end if
31: end if
32: for j = 1 to NCO do
33: att⇐ Sign(IDCOj , IDo)
34: if COj is online then
35: att, So, ACS, ↣ COj

36: [SS]j , n, EK, Enc(EK)SK , ↣ COj

37: else if ACS ⇒ common pool then
38: for i = 1 to size[IDSH]j do
39: SSi, IDo, IDST ↣ SHi

40: end for
41: [IDSH]j , IDSTj ↣ u
42: else Store CO’s values
43: end if
44: end for

well as, the uploader’s sensitivity level Su, number βu of the
contacts satisfying its selection rules (needed for the com-
mon pool approach), and two random values (EKu, SKu).
Then, the KMS sends IDo to the users whose ID is in the
list of stakeholders (line 11) for requesting their participation
and waits for their response, which also contains a sensitiv-
ity level Sj , a value βj and two random numbers EKj and
SKj . The KMS uses the submitted random values for gen-
erating EK and SK.6 If a stakeholder is not available, the

6Specifically, it combines co-owners’ random values, by ap-
plying the XOR bitwise operation (Algorithm 1, line 14).

Uploader (u)

OSN

KMS

1a

1b

2

3

5

4a

4b

8

6

ID(o), OT, [ID(ST)], S(u), EK(u), SK(u)

 o, ID(o), [ID(ST)]

 ID(o)

S(j), EK(j), SK(j)

[SS(j)], S, ACS, EK, Enc(EK)(SK)

Stakeholders
(ST)

[SS(u)], S, ACS, EK, Enc(EK)(SK)

Enc(o)(EK), Enc(EK)(SK), [ID(SH)], ACS, S

Verification, att(ST)

4c[ID(SH)]

Request Object

Enc(o)(EK), Enc(EK)(SK), [ID(SH)], ACS, S 7

Figure 2: Dataflow between the users, the KMS and the
provider for generating the keys and uploading the object.

KMS checks the predefined values of the stakeholders, those
defined during the initialization phase. Then, the KMS uses
the submitted sensitivity levels (and the predefined ones) to
determine the sensitivity So of the object (lines 17, 19).

After that, the KMS encrypts the obtained EK with SK,
determines the most suitable access control strategy (ACS)
for the object and estimates the number of shares to be
created (lines 20-22). A simplified example of the procedure
followed for choosing the strategy is given in lines 3-8, where
the strategy is selected according to the object’s sensitivity
and number of co-owners. Then, the KMS employs a secret
sharing scheme to generate a number of shares from SK.

After the creation of the shares, the KMS determines the
number of shares that correspond to each co-owner on the
basis of the selected ACS. In the case of the layered ap-
proach only a single share is provided to each co-owner. On
the other hand, in the case of the common pool, the KMS de-
termines if the shares should be distributed uniformly to all
the co-owners, by considering the number of their contacts
that are qualifiable for receiving a share (βj), and distributes
them accordingly. In the case of a non-available co-owner,
the KMS sends the co-owner’s shares directly to its prede-
fined shareholders, and the list of shareholders’ identifiers to
the uploader (lines 38, 39, 41). It is noted that each one of
the predefined shareholders already holds a predefined SPR,
delegated by the co-owner during the initialization.

Furthermore, the KMS provides an attestation (att) to
each co-owner to confirm “co-ownership” of the object, as it
will be discussed later. Additionally to the shares and the
attestation, other information such as the object’s sensitiv-
ity, the total number of shares, the followed strategy and
the encryption key (also, Enc(EK)SK) are provided to the
co-owners by the KMS (lines 35, 36).

4.2.2 Distribution of secret shares
As previously presented, the co-owners that are available

during the object’s upload phase receive a number of shares,
and some other information about the object, by the KMS.
Upon receiving the shares, each co-owner employs Algo-
rithm 2 for disseminating them to its trusted shareholders.

In the case of the common pool approach, a co-owner spec-
ifies a share provision rule SPR for each one of its shares,

Note that according to this approach the freshness of keys
can be guaranteed even by a single co-owner that submits
fresh, non-previously used, values EKj and SKj .

Algorithm 2 Distribution of secret shares of each co-owner
to its shareholders.

1: Inputs:
[SS]i , [IDCO],n,S,ACS

2: Initialize:
ni ← size [SS]i, NCO ← size [CO]

3: if ACS ⇒ common pool then
4: for j = 1 to NSSi do
5: SPRij ← SpecifyRule (SSij , [CO])
6: SSij , SPRij , ↣ SHj

7: end for
8: end if
9: if ACS ⇒ layered& ni = 1 then

10: MSi ⇐∶ SSi

11: NSHi , µi ←DetermineNSH (S,Si)
12: [SSS]i ← ShareCreation (MSi, NSH , µi)
13: for j = 1 to NSHi do
14: SPRij ← SpecifyRule (SSSij , [CO])
15: SSSij , SPRij , ↣ SHj

16: end for
17: end if
18: if µi ≠ � then
19: [SHi] , µi ↣ u
20: else [SHi] ↣ u
21: end if

and delegates the SPR along with the share to a shareholder
(lines 4-6). In the case of the layered approach, we consider
the single share received by each co-owner as a master share
(MS). In this case, a co-owner has to employ secret sharing
for creating a number of subshares from the received mas-
ter (in Algorithm 2 we refer to subshares as SSS). Thus,
each co-owner has to determine the number of its subshares
NSHi and the sub-threshold µi required for reconstructing
its master (line 11). The number of subshares actually de-
pends on the selection rules of the particular co-owner, that
is, on the number of its contacts selected as shareholders.
Furthermore, the sub-threshold µi of each co-owner is deter-
mined according to its preferred sensitivity level Si, which
may be higher than the object’s sensitivity S, such that
µi ← ⌈Si ×NSHi⌉. After specifying NSHi and µi, each co-
owner employs secret sharing for generating its subshares,
specifies a SPR for each subshare similarly to the case of
the common pool approach, and disseminates a subshare
and the corresponding rule to a shareholder (lines 14, 15).

Finally, independently of the followed strategy, each co-
owner sends to the uploader a list of its shareholders’ identi-
fiers. In the case of the layered approach each co-owner also
provides information regarding its sub-threshold µi. Then, a
list of all the shareholders of the object (and information re-
garding ACS, S, µi, etc.,) is provided to the service provider
by the uploader, for allowing requesters to locate and collect
the shares.7

4.2.3 Encrypting and uploading the object
As already described in Algorithm 1, after the generation

of the keys and shares, the KMS provides to each co-owner
a subset of the shares, information about the access control

7It is noted that the proposed mechanism does not reveal the
identity of co-owners to the service provider, as neither their
identifier is provided, nor any interaction between them and
the service provider takes place.

strategy and the sensitivity of the object, and the encryption
key EK and Enc(EK)SK . After receiving the encryption
key, independently of the followed strategy, the data owner
(i.e., uploader) encrypts the object with EK and uploads
both the encrypted object Enc(o)EK and the encrypted key
Enc(EK)SK online. Additionally to the encrypted object,
the data owner uploads a list containing the identifiers of all
the shareholders of the object, the access control strategy
(also contains co-owners’ sub-thresholds in the case of the
layered approach), and the sensitivity of the object.

The list of shareholders’ identifiers is constructed by the
data owner by considering the identifiers of each co-owner’s
shareholders, provided by the co-owners and the KMS. As
described in Algorithm 1, when a co-owner is unavailable the
KMS distributes the shares directly to the co-owner’s prede-
fined shareholders and provides the list of their identifiers to
the data owner. If a co-owner is available during the object’s
upload phase, it receives its shares by the KMS, distributes
them according to Algorithm 2 to its trusted shareholders
and then, provides a list of their identifiers to the data owner.

The list of shareholders’ identifiers is provided by the ser-
vice provider to a requester, along with the requested object,
for allowing the requester to locate and collect the shares.
Moreover, when the direct shareholders of a co-owner are al-
lowed to delegate access control enforcement, as described in
Section 4.1, they update the object’s list of identifiers hosted
by the service provider, for including their trusted contacts,
or for revoking delegations they previously granted.

It is noted that this mechanism allows the co-owner to ver-
ify the correctness of the uploaded object, by checking if the
object has been properly encrypted, with the correct key be-
fore being uploaded by the data owner. Similarly, they can
verify the correctness of the strategy, sensitivity and list of
shareholders. As presented in Figure 2, the co-owners can
retrieve the object from the service provider, similarly to a
typical requester. In the case of an improper, maliciously
uploaded object, the co-owners can request removal or re-
placement. In this case, they present the attestation of the
KMS to prove that they actually are co-owners of the object.

4.3 Object request
Contrarily to the upload phase, which requires some in-

volvement of the end users for uploading the data object and
specifying their rules, the processes employed by sharehold-
ers and the requester can be handled transparently, without
requiring human intervention. The process followed by the
requester can completely run in the background, and the ob-
ject will be presented only after successful key reconstruc-
tion and decryption of the object. Also, the shareholders can
validate the share provision rules in an automatic way (e.g.,
browser plugin), as these rules follow the ReBAC model.

The process followed by the requester for collecting the
shares and accessing the object is presented in Algorithm 3.
Initially, the requester asks the service provider for a specific
object o, and the service provider sends the encrypted object
Enc(o)EK and the encryption key EK (which is encrypted
with the secret). It also provides information regarding the
object’s strategy (e.g. sensitivity, threshold, sub-thresholds)
and the list of its shareholders’ identifiers (lines 11-13).

In the case of the common pool approach, the requester
starts contacting the shareholders whose identifiers are in
the list, for requesting the shares. This process is terminated
when the number of collected shares reaches the threshold

Algorithm 3 Process followed by the requester for access-
ing the data object o.

1: procedure ShareCollect(SHj)
2: IDAR, Req(SSj)↣ SHj

3: Req(V erify(IDAR, nonce))↢ SHj

4: Req(R) ∶= SPR(CO) ↢ SHj

5: if ∃R ∶ SPR(CO) → True then
6: Sgn(IDAR, nonce)KAR , Sgn(R)KCOi

↣ SHj

7: SSj ↢ SHj

8: end if
9: end procedure

10: Process:
11: Req(o)↣ OSN
12: Enc(o)EK , Enc(EK)SK ↢ OSN
13: [SH] , ACS(S, k, [µi])↢ OSN
14: if ACS ⇒ common pool then
15: [SS]← �, j ∈ [SH]
16: while ([SS] < k) & (N ≤ [SH]) do

17: [SS]
SSj←ÐÐ ShareCollect(SHj)

18: j ← j + 1, N ← N + 1
19: end while
20: if [SS] ≥ k then
21: SK ←KeyReconstruction([SS])
22: end if
23: end if
24: if ACS ⇒ layered then
25: [MS]← �, i ∈ [CO]
26: while ([MS] < k) & (Ni ≤ [CO]) do
27: while ([SS]i < µi)&(nj ≤ [SH]i) do

28: [SS]i
SSij←ÐÐ ShareCollect(SHj)

29: j ← j + 1, nj ← nj + 1
30: end while
31: if [SS]i ≥ µi then
32: MSi ←KeyReconstruction([SS]i)
33: end if
34: i← i + 1, Ni ← Ni + 1
35: end while
36: if [MS] ≥ k then
37: SK ←KeyReconstruction([MS])
38: end if
39: end if
40: if SK ∶= True then
41: EK ←Decrypt(EK)SK , o←Decrypt(o)EK

42: end if

k, or after all the shareholders have been contacted. If this
process is successful, the requester uses the collected shares
for reconstructing the secret (line 21).

The ShareCollect(SH) procedure, which is employed
by the requester for contacting each shareholder, triggers a
simple authentication and authorization protocol. Accord-
ing to this, the requester has to prove its identity by signing
IDAR and a given nonce. This can be verified with the re-
quester’s public key, which can be retrieved from the service
if it is not known. Also, the shareholder asks the requester
to provide its relationships that satisfy the co-owner’s SPR
that corresponds to the particular share (line 4). The re-
quester checks if such relationships exist, and if this is the
case, it submits the relationships to the shareholder. Then,
the shareholder verifies the identity of the requester and the
validity of the relationships, and provides the share.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 6 8 10 12

T
im

e
 (

µ
-s

e
c
)

Number of Co-owners

SK, EK, Sens

Secret Key

Sensitivity

Figure 3: Time spent by the KMS for computing the keys
and the sensitivity values

In the case of the layered approach, the requester needs
to selectively collect subshares of particular shareholders, for
reconstructing a sufficient number of master shares. Thus,
the requester has to keep track of the reconstructed masters,
with respect to the top-layer threshold k and accordingly, to
target those shareholder that manage subshares needed for
reconstructing a specific master (lines 25-39). In general,
the requester categorizes shareholders into groups, accord-
ing to which co-owner each shareholder serves, and starts
contacting them in a manner that resembles the common
pool approach at a group level. After the requester succeeds
in reconstructing the first master, it tries to collect subshares
of another co-owner, and this process is repeated until a suf-
ficient number of masters are reconstructed. The process is
terminated when the number of masters reaches the thresh-
old k, or after all the shareholders needed for each master,
according to the sub-thresholds µi, have been contacted.

5. PERFORMANCE EVALUATION
In general, it is noted that it is very difficult to evaluate

the proposed approach in practice, with a large scale exper-
imental deployment, as it is almost impossible to employ a
number of users and their friends, that can reflect the char-
acteristics of OSN population, by the means of their number
of contacts, users’ location distribution, online time patterns
etc. For this reason, we decided to independently assess the
performance of the core modules of the mechanism, that can
affect user experience in the sense of incurred latency.

All the experiments have been conducted on commodity
hardware (Intel i7-4702MQ, 2.2GHz), as our intention is to
address the impact of the mechanism on a typical user.

In general, the conducted experiments refer to the main
functionalities of our mechanism: (i) object upload and (ii)
object request. For the upload phase, we measure the time
required by the KMS for generating EK and SK, for calcu-
lating the sensitivity S and for generating the shares. Also,
we estimate the time required for the data owner to encrypt
the object. On the other hand, we assess the performance of
the object’s accessing phase by addressing the time spent by
a requester to reconstruct the secret and decrypt the object.
Here, we give more emphasis on the accessing phase, as this
is actually the overhead that affects the end users.
Key Generation. We run this experiment multiple times
to measure the average time spent by the KMS for gener-
ating EK and SK, and calculating the sensitivity. We also

 0

 2

 4

 6

 8

 10

 12

 14

 16

640x480

720x540

960x640

960x720

1280x960

2048x1536

2048x2048

T
im

e
 (

m
-s

e
c
)

Size of Photos (pixels)

Encryption

Decryption

Figure 4: Time spent for encrypting and decrypting photos
of different sizes.

examine how the number of co-owners affects the process,
as all the co-owners contribute by submitting their preferred
values. As depicted in Figure 3, the time spent for calculat-
ing the sensitivity and generating the keys linearly depends
on the number of co-owners, but it is in the order of mi-
croseconds, which can be considered as negligible.
Encryption scheme. We implemented an encryption mod-
ule that uses the AES-256 algorithm for encrypting and de-
crypting the data objects. We assess the performance of
this module for estimating the overhead imposed to the up-
loader and the requester during o’s uploading and accessing
phase respectively. We invoke the encryption module multi-
ple times, for encrypting and decrypting photos of different
sizes (number of pixels). Specifically, we categorize different
photos according to their size, as shown in Figure 4, encrypt
and decrypt 500 photos of each category, and measure the
time spent for each operation. We observe that most of the
photos hosted in current services have dimensions of 960×720
pixels (mostly due to restrictions by the services), but since
photos of a larger size, such as 2048×1536, have started be-
coming popular lately, we examine both categories as well.
Our experiments demonstrate that it takes less than 4ms for
encrypting or decrypting photos of the former category, and
less than 9ms for those of the latter category.
Secret Sharing Scheme. In this experiment we assess the
creation of secret shares by the KMS, and the reconstruction
of the secret by the requester. We initially use 300 different
256-bit keys (generated by the KMS) to create a number
of shares from each one of them, and measure the average
time overhead. For all the 300 iterations we keep the total
number of created shares and the sensitivity (e.g., threshold)
constant. Then, we repeat this process multiple times, for
different total number of shares each time, while keeping the
sensitivity constant. Specifically, we generate from 4 to 80
shares, with the sensitivity being at 0.5. Then, we repeat
this process for sensitivity values equal to 0.6, 0.7 and 0.8.

For assessing the process of reconstructing the secret we
use the shares created in the previous experiment. Essen-
tially, the reconstruction process is repeated multiple times,
for reconstructing each one of the secret keys that have been
used in the previous experiment. Also, it should be noted
that in this experiment we reconstruct the secret by combin-
ing exactly k-out-of-n shares. The overhead for creating the
shares and for reconstructing the key is shown in Figure 5.

The results of these two experiments indicate that both
the total number of created shares and the sensitivity value

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80

T
im

e
 (

m
-s

e
c
)

(a) Generation of secret shares

Sensitivity: 0.5

Sensitivity: 0.6

Sensitivity: 0.7

Sensitivity: 0.8

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80

T
im

e
 (

m
-s

e
c
)

Number of secret shares

(b) Reconstruction of the secret

Sensitivity: 0.5

Sensitivity: 0.6

Sensitivity: 0.7

Sensitivity: 0.8

Figure 5: Time overhead for (a) generating a number of se-
cret shares and (b) reconstructing the secret from a sufficient
number of shares, with regards to object’s sensitivity level.

affect the performance of share creation and key reconstruc-
tion. The overhead for key reconstruction is lower than that
of share creation, for a small number of created shares (e.g.
50). On the other hand, as the number of shares and the sen-
sitivity increases, the overhead of the reconstruction grows
in a faster rate, comparably to the share creation process.

Our results indicate that the time required for creating 50
shares, or reconstructing the secret, does not exceed 2ms.
Thus, we consider that the common pool approach is more
suitable for objects co-owned by a small number of users. On
the other hand, it seems that the layered approach is more
effective for objects that belong to a large number of co-
owners or having high sensitivity, as the scheme is employed
multiple times (for each co-owner’s shares), but only a small
number of shares is used each time.

These experiments demonstrate that the overhead for cre-
ating the shares, reconstructing the secret, and encrypting
and decrypting the objects is minimal and that it does not
actually affect the user experience. The main issues that can
affect user experience are related to the availability of share-
holders in the system. We consider that the enhancements
proposed in Section 4.1, which allow replication of the shares
and further delegation of the access control enforcement to
shareholders’ trusted contacts, can effectively overcome or
at least, minimize the availability issues in the system.

6. SECURITY ANALYSIS
In general, we consider the Key Management Service fully

trusted for computing the sensitivity and keys, and for gen-
erating and distributing the shares, as discussed in Section 2.
Service provider: We consider the service provider as
honest but curious, in the sense that it follows the proto-
col correctly, but possibly tries to infer user information
from the managed resources. For this reason, our model
requires that all the resources are being uploaded encrypted

and that the metadata uploaded along with each resource
do not reveal any information regarding the identity of co-
owners. Also, the proposed model ensures that the provider
does not perform any functionality related to access control,
which could possibly reveal information regarding the co-
owners and their privacy preferences. The only case where
the co-owners have to reveal their identity to the service
provider, is to prove co-ownership of a particular object, for
requesting its replacement after detecting malicious behav-
ior by the uploader (e.g., non-properly encrypted object).
Co-owners: As introduced in Section 1, many users are
slightly concerned about privacy. In such a case, we do not
consider the privacy insensitive users (i.e., data owner, stake-
holders) as malicious, as they do not have the intention to
impose damage to other users, and actually, their behavior
does not deviate from the expected one.8 This applies even
for users having the intention to enforce their policy over
those of other users, as soon as these users follow the proto-
col honestly. The proposed mechanism prevents the cases of
unintentional privacy leakage as all the co-owners contribute
on the specification of the object’s sensitivity, which ensures
that the concerns of all the associated users are taken into
account. Also, the selection of trusted shareholders and the
distribution of shares, as well as the guarantee that a single
user cannot control a large number of shares with regards
to the threshold, ensures that multiple co-owners should au-
thorize a requester for accessing the object.

A stricter threat model can consider the existence of arbi-
trarily malicious users that collude for allowing a requester
to access an object he/she is not authorized to. These users
exhibit behavior that does not match the expected and al-
lowed one. In this case our model cannot eliminate all the
possible threats, but we establish mechanisms to prevent,
identify and easily recover from such incidents. According
to this strict threat model, a malicious data owner can pos-
sibly upload a non-properly encrypted object or provide in-
correct information to the service provider for making the
object inaccessible to requesters related to other co-owners
(e.g., incorrect IDSH). The co-owners can identify such ma-
licious behavior of the data owner by requesting the object
from the service provider, similarly to a typical requester.
As a result the co-owners can request removal or replace-
ment of the object. However, this functionality can possibly
allow malicious co-owners, or even users that pretend to be
the co-owners, to replace a proper object. Our model miti-
gates this by requiring the majority of co-owners to consent,
and also to provide the signed attestations by the KMS.
Shareholders The shareholders are selected by co-owners’
selection rules according to the trust value of the existing
relationships among the co-owner and its contacts. This
ensures that the selected shareholders are trusted by the
co-owners to properly validate SPR. Also, in the case of
access control enforcement delegation, the co-owners actu-
ally specify the minimum requirements on the selection rules
of their contacts that delegate the process, as the selection
rules have to be stricter than SPR. Thus, it is expected that

8We do not consider a co-owner having loose selection and
share provision rules as malicious, as this behavior is allowed
by the model. Most likely this particular co-owner has set a
low sensitivity level Sj for the object, and these rules reflect
its perspective on the importance of the object. In the same
sense, the co-owners that set high sensitivity level Sj are
allowed to specify strict rules for the shares they control.

the shareholders behave correctly. However, in the following
we examine the case of malicious shareholders that provide
the shares without validating the share provision rules.
Common pool. According to this approach, a requester needs
to collect k shares for being able to reconstruct the secret.
In the case where the requester’s relationships satisfy the
rules of α shareholders (where α < k), the requester is able
to reconstruct the secret if there exist k-α malicious share-
holders that provide the shares without validating SPRs.
Thus, for objects with high sensitivity and strict SPRs, a
large number of malicious shareholders is needed for allow-
ing unauthorized access. We emphasize that we consider
this as very rare, as shareholders are not selected randomly,
or thoughtlessly, but according to relationship trust values.
Layered approach. In this approach k × (µi − αi) malicious
shareholders should collude to allow unauthorized access to
the object. We consider it as stricter than the common pool,
as malicious shareholders need to be selected by multiple co-
owners, for allowing reconstruction of k master shares.

A final comment is due the fact that legitimate users can
detect malicious behavior of other users. As such, the pro-
posed system can prevent users from acting maliciously, as
the detection of such behavior can result to some sort of
punishment. As an example, the share provision rules con-
sider the trust value of the user’s relationships. Thus, when
a malicious user is detected, the users affected by its actions
can possibly revoke an existing relationship or reduce the
level of the relationship trust. Thus, in reality, illegitimate
behavior by a user can result to limited access to resources.

7. RELATED WORK
Multiple works (e.g, [10, 19, 27]) propose rule-based mech-

anisms for controlling access to resources in OSNs. In [19],
the authors investigate whether organizational tags can be
used for access control. According to this work, the users
are able to annotate their photos with descriptive tags and
to specify access control rules based on these tags. Squic-
ciarini et al. [27] proposes an adaptive mechanism for clas-
sifying photos according to their content, and for predicting
acceptable policies based on user’s previous access control
rules. Carminati et al. [10] propose a model that considers
the type, trust and distance of user relationships for access
control purposes. However, these approaches do not allow
other associated users to contribute on access control.

An approach that utilizes threshold-based secret sharing is
presented in [4]. This work considers that a set of shares are
created and distributed to the contacts of the data owner.
However, this work does not consider the users associated
with the resource as co-owners, and does not allow them to
take part in the specification and enforcement of the policy.
Moreover, the work presented in [30] investigates the use of a
secret sharing scheme in the context of Decentralized Online
Social Networks. In order to minimize collusive attacks they
exploit relationships among the secret owner, delegate can-
didates, and their friends. The proposed mechanism serves
the purpose of allowing users to back their private keys up
reliably, but not to control access to collective resources.

A number of works (e.g. [7, 16, 26, 28]) identify cases
of conflicting user interests and highlight the lack of con-
trol from the associated users. Besmer et al. [7] designs a
mechanism that allows the users tagged in a photo to send
a request to the uploader for restricting a particular users
from accessing the photo. However, it remains entirely on

the data owner to fulfill the requests of the associated users.
Also, [28] proposes a multi-party policy enforcement model
that requires an agreement between the owner and the asso-
ciated users for granting someone access to a resource. This
mechanism is very strict, as it actually results to co-owners
mutual friends. Also, the mechanism can be possibly over-
ruled by an associated user that has the intention to restrict
all the other users from accessing the resource. Similarly, the
mechanism presented in [26] allows user collaboration but it
does not prevent a small group of users from enforcing their
own privacy preferences over those of the majority.

The approach proposed in [14, 15], which is close to our
work, allows collective threshold-based access control. How-
ever, this approach except from allowing the service provider
to access the data, it also allows the data owner to select the
conflict resolution strategy that has to be followed in the case
of a conflict among the policies specified by the associated
users. Thus, the data owner can possibly overwrite the de-
cisions of the associated users. Furthermore, [16] proposes a
fine-grained access control mechanism that allows each user
within a photo to decide which users are allowed to view the
area of the photo that depicts its face. This approach solves
privacy conflicts and prevents identification of the depicted
users, but it considers the service provider as trusted and
does not prevent it from accessing user data.

8. CONCLUSIONS
In this paper we propose a socially-aware privacy preserv-

ing system for protecting users’ privacy from other users and
the service provider. We design a collaborative multi-party
access control model that allows all the users associated with
a resource to participate on the specification of the access
control policy. The proposed system prevents privacy leak-
age due to conflicting privacy settings and protects the users
from other, less privacy sensitive users. According to this
design, users do not need to rely on the service provider,
as other trusted users are being set responsible for enforcing
the policy. We plan to extend this work along several dimen-
sions. First, we plan to complement our system with a global
reputation mechanism to be used in conjunction with rela-
tionship trust values for defining the selection rules. Also,
in this work we consider that relationships are stored by
the provider for allowing requesters to discover indirect re-
lationships. This allows a requester to become aware of the
intermediate users in the path. Thus, we plan to extend our
work with protocols that support privacy-preserving path
discovery, such as those presented in [23] and [31]. Finally,
we plan to investigate if other mechanisms, such as selective
encryption, can be used to further enhance user privacy.

Acknowledgements
This work was supported by the FP7 project iSocial ITN,
funded by the European Commission under Grant Agree-
ment No. 316808, and by the SHARCS project, under Grant
Agreement No. 644571. Any opinions, conclusions, or rec-
ommendations expressed herein are those of the authors, and
do not necessarily reflect those of the European Commission.

9. REFERENCES
[1] Facebook Help Center - Tag Review.

https://www.facebook.com/help/247746261926036/.

[2] What powers instagram: Hundreds of instances,
dozens of technologies. http://instagram-engineering.
tumblr.com/post/13649370142/
what-powers-instagram-hundreds-of-instances.

[3] A. Acquisti and R. Gross. Imagined communities:
Awareness, information sharing, and privacy on the
facebook. In Proceedings of the 6th International
Conference on Privacy Enhancing Technologies,
PET’06, pages 36–58, 2006.

[4] B. Ali, W. Villegas, and M. Maheswaran. A trust
based approach for protecting user data in social
networks. In Proceedings of the 2007 Conference of the
Center for Advanced Studies on Collaborative
Research, CASCON ’07, pages 288–293, 2007.

[5] R. Baden, A. Bender, N. Spring, B. Bhattacharjee,
and D. Starin. Persona: An online social network with
user-defined privacy. In Proceedings of the ACM
SIGCOMM 2009 Conference on Data Communication,
SIGCOMM ’09, 2009.

[6] F. Beato, I. Ion, S. Čapkun, B. Preneel, and
M. Langheinrich. For some eyes only: Protecting
online information sharing. In Proceedings of the Third
ACM Conference on Data and Application Security
and Privacy, CODASPY ’13, 2013.

[7] A. Besmer and H. Richter Lipford. Moving beyond
untagging: Photo privacy in a tagged world. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’10, 2010.

[8] S. Buchegger, D. Schiöberg, L.-H. Vu, and A. Datta.
Peerson: P2p social networking: Early experiences and
insights. In Proceedings of the Second ACM EuroSys
Workshop on Social Network Systems, SNS ’09, 2009.

[9] B. Carminati, E. Ferrari, and J. Girardi. Trust and
share: Trusted information sharing in online social
networks. In 2012 IEEE 28th International Conference
on Data Engineering, pages 1281–1284, 2012.

[10] B. Carminati, E. Ferrari, and A. Perego. Rule-based
access control for social networks. In On the Move to
Meaningful Internet Systems 2006: OTM 2006
Workshops, pages 1734–1744, 2006.

[11] L. Cutillo, R. Molva, and T. Strufe. Safebook: A
privacy-preserving online social network leveraging on
real-life trust. Communications Magazine, IEEE,
47(12), 2009.

[12] P. W. Fong. Relationship-based access control:
Protection model and policy language. In Proceedings
of the First ACM Conference on Data and Application
Security and Privacy, CODASPY ’11, 2011.

[13] R. Gross and A. Acquisti. Information revelation and
privacy in online social networks. In Proceedings of the
2005 ACM Workshop on Privacy in the Electronic
Society, WPES ’05, pages 71–80, 2005.

[14] H. Hu, G.-J. Ahn, and J. Jorgensen. Detecting and
resolving privacy conflicts for collaborative data
sharing in online social networks. In Proceedings of the
27th Annual Computer Security Applications
Conference, ACSAC ’11, 2011.

[15] H. Hu, G.-J. Ahn, and J. Jorgensen. Multiparty access
control for online social networks: Model and
mechanisms. Knowledge and Data Engineering, IEEE
Transactions on, 25:1614–1627, 2013.

[16] P. Ilia, I. Polakis, E. Athanasopoulos, F. Maggi, and

https://www.facebook.com/help/247746261926036/
http://instagram-engineering.tumblr.com/post/13649370142/what-powers-instagram-hundreds-of-instances
http://instagram-engineering.tumblr.com/post/13649370142/what-powers-instagram-hundreds-of-instances
http://instagram-engineering.tumblr.com/post/13649370142/what-powers-instagram-hundreds-of-instances

S. Ioannidis. Face/off: Preventing privacy leakage
from photos in social networks. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15, 2015.

[17] S. Jahid, S. Nilizadeh, P. Mittal, N. Borisov, and
A. Kapadia. Decent: A decentralized architecture for
enforcing privacy in online social networks. In 2012
IEEE International Conference on Pervasive
Computing and Communications Workshops, 2012.

[18] M. Johnson, S. Egelman, and S. M. Bellovin.
Facebook and privacy: It’s complicated. In Proceedings
of the Eighth Symposium on Usable Privacy and
Security, SOUPS ’12, pages 9:1–9:15, 2012.

[19] P. Klemperer, Y. Liang, M. Mazurek, M. Sleeper,
B. Ur, L. Bauer, L. F. Cranor, N. Gupta, and
M. Reiter. Tag, you can see it!: Using tags for access
control in photo sharing. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, CHI ’12, pages 377–386, 2012.

[20] B. Krishnamurthy and C. E. Wills. On the leakage of
personally identifiable information via online social
networks. In Proceedings of the 2Nd ACM Workshop
on Online Social Networks, WOSN ’09, 2009.

[21] S. Landau. Making sense from snowden: What’s
significant in the nsa surveillance revelations. IEEE
Security & Privacy, 11(4):54–63, 2013.

[22] M. Madejski, M. Johnson, and S. Bellovin. A study of
privacy settings errors in an online social network. In
Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2012 IEEE International
Conference on, pages 340–345, 2012.

[23] G. Mezzour, A. Perrig, V. D. Gligor, and
P. Papadimitratos. Privacy-preserving relationship
path discovery in social networks. In Cryptology and
Network Security, 8th International Conference,
CANS, pages 189–208, 2009.

[24] M. Ra, R. Govindan, and A. Ortega. P3: toward
privacy-preserving photo sharing. In Proceedings of the
10th USENIX Symposium on Networked Systems
Design and Implementation, NSDI ’13, 2013.

[25] A. Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979.

[26] A. C. Squicciarini, M. Shehab, and F. Paci. Collective
privacy management in social networks. In Proceedings
of the 18th International Conference on World Wide
Web, WWW ’09, 2009.

[27] A. C. Squicciarini, S. Sundareswaran, D. Lin, and
J. Wede. A3p: Adaptive policy prediction for shared
images over popular content sharing sites. In
Proceedings of the 22Nd ACM Conference on
Hypertext and Hypermedia, HT ’11, 2011.

[28] K. Thomas, C. Grier, and D. M. Nicol. Unfriendly:
Multi-party privacy risks in social networks. In
Proceedings of the 10th International Conference on
Privacy Enhancing Technologies, PETS’10, 2010.

[29] A. Tootoonchian, S. Saroiu, Y. Ganjali, and
A. Wolman. Lockr: Better privacy for social networks.
In Proceedings of the 5th International Conference on
Emerging Networking Experiments and Technologies,
CoNEXT ’09, 2009.

[30] L. H. Vu, K. Aberer, S. Buchegger, and A. Datta.
Enabling secure secret sharing in distributed online
social networks. In Computer Security Applications
Conference, 2009. ACSAC ’09. Annual, pages
419–428, Dec 2009.

[31] M. Xue, B. Carminati, and E. Ferrari. P3d -
privacy-preserving path discovery in decentralized
online social networks. In Computer Software and
Applications Conference (COMPSAC), 2011 IEEE
35th Annual, pages 48–57, 2011.

	Introduction
	Overview of the Mechanism
	Basic access control model

	Access Control Strategies
	Common pool approach
	Layered approach
	Selection of the best ACS

	Detailed System Design
	Increasing availability
	Object upload phase
	Generation of keys and shares
	Distribution of secret shares
	Encrypting and uploading the object

	Object request

	Performance Evaluation
	Security Analysis
	Related Work
	Conclusions
	References

