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Abstract—The exposure of location data constitutes a signif-
icant privacy risk to users as it can lead to de-anonymization,
the inference of sensitive information, and even physical threats.
In this paper we present LPAuditor, a tool that conducts a
comprehensive evaluation of the privacy loss caused by public
location metadata. First, we demonstrate how our system can
pinpoint users’ key locations at an unprecedented granularity
by identifying their actual postal addresses. Our evaluation on
Twitter data highlights the effectiveness of our techniques which
outperform prior approaches by 18.9%-91.6% for homes and
8.7%-21.8% for workplaces. Next we present a novel exploration
of automated private information inference that uncovers “sen-
sitive” locations that users have visited (pertaining to health,
religion, and sex/nightlife). We find that location metadata can
provide additional context to tweets and thus lead to the exposure
of private information that might not match the users’ intentions.

We further explore the mismatch between user actions and
information exposure and find that older versions of the official
Twitter apps follow a privacy-invasive policy of including precise
GPS coordinates in the metadata of tweets that users have
geotagged at a coarse-grained level (e.g., city). The implications
of this exposure are further exacerbated by our finding that users
are considerably privacy-cautious in regards to exposing precise
location data. When users can explicitly select what location data
is published, there is a 94.6% reduction in tweets with GPS
coordinates. As part of current efforts to give users more control
over their data, LPAuditor can be adopted by major services
and offered as an auditing tool that informs users about sensitive
information they (indirectly) expose through location metadata.

I. INTRODUCTION

The capability of modern smartphones to provide fine-
grained location information has enabled the deployment of a
wide range of novel functionality by online services. In Twitter
users can incorporate location information in their tweets to
provide more context and enrich their communications [49], or
even enhance situational awareness during critical events [69].
Nonetheless, the presence of location metadata in a by-default-
public data stream like Twitter constitutes a significant privacy
risk. Apart from potentially enabling physical threats like stalk-
ing [31], [53] and “cybercasing” [29], location information
could lead to the inference of very sensitive data [48], [16],
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and even get combined with other information collected from
online services [54]. Previous work has demonstrated how
to identify users’ key locations (i.e., home and work) at a
postcode [25] or very coarse-grained (~10,000m?) level [34],
[19]. However, this coarse granularity fails to highlight the true
extent of the privacy risks introduced by the public availability
of geographical information in users’ tweets. Furthermore,
these studies have not explored what sensitive information can
be inferred from users geotagging tweets at other locations.

In this paper we develop LPAuditor, a system that examines
the privacy risks users face due to publicly accessible loca-
tion information, and conduct a large scale study leveraging
Twitter data and public APIs. Initially we present techniques
for identifying a user’s home and work at a postal address
granularity; our heuristics are built around intuitive social
and behavioral norms. We first conduct a two-level clustering
process for creating clusters of tweets and mapping them to
postal addresses, which is robust to GPS errors [71] and spatial
displacement due to user mobility (e.g., the user tweeting
while arriving or departing from home). We then analyze the
spatiotemporal characteristics of a user’s tweets to infer those
key locations. Through an arduous manual process we create
a ground truth dataset for 2,047 users, which enables us to
experimentally evaluate our auditing tool. Our system is able
to identify the home and workplace for 92.5% and 55.6% of the
users respectively. When compared to state-of-the-art results,
we find that our techniques outperform previous approaches
by 18.9%-91.6% for homes and 8.7%-21.8% for workplaces.

Apart from the increased effectiveness of our techniques,
our work demonstrates that by leveraging widely available
geolocation databases attackers can pinpoint users’ key loca-
tions at a granularity that is orders of magnitude more precise
than previously demonstrated. Without doubt, this level of
accuracy renders the identification of users a trivial task. The
privacy implications of our findings are even more alarming
when considering the prominent role that platforms like Twitter
play in protests and other forms of social activism [35]. A
substantial number of users choose to not reveal their actual
identity, and prior work has found a correlation between the
choice of anonymity and the sensitivity of topics in tweets [50].

LPAuditor offers a comprehensive analysis of the privacy
loss caused by location metadata by also exploring whether the
remaining locations can be used to infer personal information
that is typically considered sensitive. While the inference of
sensitive information has been one of the main motivations
behind prior research on location-privacy [57], such automated



attacks have not been demonstrated in practice. Our system
examines tweets that place the user at (or in close proximity of)
locations that are associated with such information. Currently
we search for locations pertaining to three sensitive topics:
religion, medical issues, and sex/nightlife. We find that 71%
of users have tweeted from sensitive locations, 27.5% of
which can be placed there with high confidence based on the
content of their tweets. Privacy loss is amplified by the location
metadata as it leaks additional contextual details to the tweet’s
content; e.g., the user may simply mention being at a doctor
without giving more details, while the location metadata places
the user at an abortion clinic. We also explore a spatiotemporal-
based approach and find that 29.5% of the users can be placed
at a sensitive location regardless of tweet content. We envision
LPAuditor being offered as an auditing tool by location-based
services, informing users about the sensitive information that
can be inferred based on their publicly accessible location data.

Finally, our study reveals that older versions of the Twitter
app implement a privacy-invasive policy. Specifically, tweets
that are geotagged by users at a coarse granularity level (e.g.,
city) include the user’s exact coordinates in the tweets’ meta-
data. This privacy violation is invisible to users, as the GPS
coordinates are only contained in the metadata returned by
the API and not visible through the Twitter website or app. To
make matters worse, this historical metadata currently remains
publicly accessible through the API. We quantify the impact
of Twitter’s invasive policy, and find that it results in an almost
15-fold increase in the number of users whose key locations are
successfully identified by our system. In an effort to remediate
this significant privacy threat we have disclosed our findings
to Twitter. In summary, our main research contributions are:

e We conduct a comprehensive, IRB-approved, large-scale
exploration of the privacy risks that users face when
location data is, either explicitly or inadvertently, shared
in a public data stream like Twitter’s APIL.

e We develop LPAuditor, a system that leverages location
metadata for identifying key locations with high preci-
sion, outperforming state-of-the-art approaches. Apart from
achieving superior granularity, we also introduce a cluster-
ing approach that renders our system robust to errors in
GPS readings or spatial displacement due to user mobility.

e We present the first, to our knowledge, study on the fea-
sibility of automated location-based inference attacks. Our
system leverages novel content-based and spatiotemporal
techniques for inferring sensitive user information, thus,
validating the motivation of prior location-privacy research.

e We measure the impact of Twitter’s invasive policy for
collecting and sharing precise location data and quantify
the lingering implications. Our study on user geotagging
behavior reveals that users are restrained when publishing
their location and avoid including exact coordinates when
given control by the underlying system, yet remain exposed
due to the availability of this historical data.

II. MOTIVATION AND THREAT MODEL

The sensitive nature of mobility data is well known to the
research community, which has proposed various techniques so
far for limiting the granularity of the location data that services
can obtain (e.g., [32]). In practice, however, such defenses have

not seen wide deployment and a large number of mobile apps
collect precise locations [60]. While prior work has proposed
approaches for identifying key locations (home and work),
the reported granularity is not sufficient for demonstrating the
true extent of the threat (e.g., [25], [34], [19], [20]). More
importantly, the risk of sensitive information being inferred
from other location data points remains unexplored.

Despite the privacy risk this data poses to users, services do
not stringently prohibit access to it and may expose it to third
parties [38] or render it publicly accessible. To demonstrate
the extent and accuracy of sensitive information inference that
an adversary can achieve, we develop and evaluate LPAuditor
exclusively using public and free data streams and APIs. Fur-
thermore, we design our system to be application-independent
and applicable to other location datasets. We show that location
metadata enables the inference of sensitive information that
could be misused for a wide range of scenarios (e.g., from
a repressive regime de-anonymizing an activist’s account to
an insurance company inferring a customer’s health issues, or
a potential employer conducting a background check). While
we build a tool that can be adopted by online services for
better protecting users’ privacy, the techniques employed by
our system could be applied by a wide range of adversaries or
invasive third parties. By demonstrating the severity and practi-
cality of such attacks, we aim to initiate a public discussion and
incentivize the adoption of privacy-preserving mechanisms.

III. SYSTEM OVERVIEW

In this section we provide an overview of our system. First
we describe how LPAuditor clusters location data and identifies
key locations. Next we provide details on our methodology for
identifying sensitive locations that users may have visited.

A. Data Labeling and Clustering

Labeling tweets. The first step is to label each geotagged
tweet with the corresponding postal address. To highlight the
extent of the risk that users face, we opt for publicly available
API services that could be trivially employed by attackers for
mapping each tweet’s GPS coordinates to an address. To that
end, we use the reverse geocoding API by ArcGIS [1] for the
majority of our labels, and the more accurate but rate-limited
Google Maps Geocoding API [4] for the subset of labels that
are more critical to our accuracy. However, in practice, if
LPAuditor is adopted by a major service like Twitter, Google
Maps API could be used for the entirety of the calls.

Since our dataset is large in size, we developed a form of
caching that allows avoiding unnecessary API calls. Instead of
issuing a call for every pair of coordinates we come across,
we estimate the spatial position of the pair of coordinates and
search for nearby coordinates that have already been labeled.
If the distance to a labeled pair of coordinates is less than
two meters, we assign the same address label to the new pair
of coordinates. Experimentally, we found that this approach
reduced the number of API calls our system issued by 42.5%.
It should be noted, however, that geocoding APIs do not
always return an address. We label those tweets with “unknown
address”. After a manual investigation and verification of a
random subset, we observed that they typically correspond to
places like university campuses, airports or remote rural areas



that do not have exact postal addresses. Nonetheless, while we
don’t have a postal address in these cases, the granularity of
our process is unaffected as we still have the GPS coordinates.

Initial clustering. LPAuditor groups tweets assigned to
the same postal address into a single cluster (i.e., first-level
clustering). Then, by taking into consideration the coordinates
of all the tweets of a cluster, we calculate the cluster’s mid-
point. To verify that the label assigned to a cluster corresponds
to the cluster’s actual address, we use the Google Maps API for
retrieving the address of the cluster’s mid-point coordinates. If
the address returned does not match the assigned address, due
to incompatibilities between the two APIs or borderline cases
where our caching approach results in assigning a neighboring
address, we opt for the address returned from Google’s APIL.
However, due to Google’s stricter API rate limits, we only use
this methodology for verifying the address of the 10 largest
clusters of each user, which we have empirically found to
be the most significant ones. This follows our threat model
constraint of demonstrating what attacks can be conducted
using free and public APIs. In practice, attackers with many
resources could avoid rate limiting or use other proprietary
geolocating databases. For tweets with the “unknown address”
label we employ the DBSCAN algorithm [26]. We empirically
set our threshold to 30 meters, but due to its cascading effect
we may cluster together points that have a greater distance due
to other points laying in between them. We only use DBSCAN
for clustering tweets that have been marked with “unknown
address” (~16% of clusters); nearby tweets that have been
labeled with an actual address are not considered by DBSCAN.

Second-level clustering. We have observed that the initial
clustering approach can result in multiple neighboring clusters
for a specific place. The most common case involves one large
dominant cluster in the area and a few significantly smaller
clusters next to it, in close proximity. In general, it is difficult
to distinguish which tweets belong to each cluster, even by
plotting the coordinates of these tweets on a map and visually
inspecting them. Through an empirical analysis, where we
visually inspected clusters and cross referenced the timing of
their tweets, it became apparent that these closely neighboring
clusters typically correspond to a single user location but have
been mapped to a neighboring address. Various factors can lead
to this, such as inaccuracies in the user’s GPS readings [71],
the precision of the geocoding APIs, as well as differences in
the actual tweeting position of the user (tweeting when leaving
a place or arriving, being in the backyard or at a neighbor etc.).

As these nearby clusters most likely correspond to the same
place, we implement a second-level clustering for grouping
neighboring clusters into a larger one.' First we identify which
cluster in an area of multiple neighboring clusters has the
most tweets, and then we employ a modified version of
DBSCAN for estimating which clusters should be merged
with the larger one. For this clustering we consider that the
distance between the mid-point of the larger cluster and all
the smaller ones should not exceed 50 meters.” To eliminate
DBSCAN’s cascading effect we check this distance before
deciding whether a cluster should be included in the new one.

!For the remainder, clusters will imply second-level unless stated otherwise.
2We based this threshold on the FCC mandate for 911 caller location
accuracy [28], as it can account for GPS errors but is not prohibitively large
so as to lead to false positives. We also experimentally verified its suitability.

Overall, implementing our second-level of clustering al-
lows us to introduce a (configurable) radius for effectively
mapping these “runaway” data points to the main cluster.
Nonetheless, it is important to note that the initial clustering
step (using the geocoding API) is actually necessary; solely
applying DBSCAN’s radius-based clustering to the dataset
leads to oversized clusters and eliminates the finer granularity
that is achieved by the two-level clustering approach.

B. Identifying Key User Locations

Here we describe how LPAuditor selects the clusters that
represent two key user locations (home and workplace) in an
automated fashion. Our system does not take into consideration
the content and semantics of the tweets posted, but only the
temporal characteristics and distribution of the tweets in each
cluster. It should be emphasized that our work focuses on
location metadata and not the tweet content as this allows us
to quantify the true extent of the privacy risks introduced by
location metadata: even cautious users that do not explicitly
disclose information about their key locations face this privacy
loss. However, LPAuditor leverages the content for increasing
confidence in placing users in other sensitive locations, as dis-
cussed in Section III-C. It is imperative to note that our system
incorporates heuristics that are built upon intuitive assumptions
regarding common human behavior and legislative norms (e.g.,
8-hour shifts) in the US (location of our study’s users) and
many other countries as well (e.g., in the European Union).
While highly effective, these heuristics may require tweaking
for countries with vastly different social norms or legislature;
such cases are out of the scope of this work.

To capture the temporal characteristics of each cluster and
understand the user’s activity and tweeting patterns, our system
identifies active time windows, i.e., windows with at least one
geotagged tweet. Apart from days or weeks, time windows can
be set to represent weekdays, weekends, or even specific time
frames at a granularity of hours (e.g., afternoon, late night).

Homes. Due to the non-ephemeral relationship people
have with their home, the temporal characteristics of a user’s
tweeting behavior can sufficiently distinguish this location
from other visited locations. One exception could be users
that are considerably privacy-cautious and refrain from posting
geotagged tweets from their home or surrounding areas. Our
approach for identifying a user’s home cluster is based on the
following intuitions: (i) as the user spends time at home every
day, we expect to repeatedly observe activity from this cluster
(i.e., multiple active windows in the cluster’s timespan), and
(ii) the tweets will not occur solely within a specific time frame
— we expect tweets that correspond to almost all hours in the
day. In other words, while other clusters may follow a specific
well-defined temporal pattern, we expect the home cluster to
exhibit a more ‘“chaotic” behavior in the long term, having
tweets that were posted at different times throughout the day,
from early in the morning to very late at night.

While experimenting with two approaches for specifying
the time windows (i.e., only weekends vs entire weeks), we
observed that a week-based time window may introduce uncer-
tainty for users that exhibit considerable activity from multiple
clusters. As such, we design a robust home-inferring algorithm
by only considering weekends. We determine which are the
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Fig. 1: An example diagram representing the tweeting activity
of two users in our dataset from their home and work clusters.
Userl exhibits a more “traditional” activity pattern, while
User2 exhibits erratic patterns with different work-shifts.

user’s five most active clusters “horizontally”, i.e., those with
the highest number of active weekends, and estimate the time
frame and active hours of each of these clusters. Following our
intuition that the home will exhibit more widespread temporal
activity from a macroscopic viewpoint, we choose the cluster
with the broadest time frame as the user’s home.

Work. We expect that, for most users, tweets posted from
work will follow a well-defined time frame that corresponds
to the working hours. We set the time window to the entire
week and identify the five most active clusters, i.e., those
with the highest number of active weeks (in the horizontal
dimension). We ignore the home cluster when assembling this
set. For each remaining candidate cluster we try to identify
the cluster’s most dominant time frame; we identify all the
distinct days in which the user has posted more than one
tweet, and use the day’s earliest and latest tweet for calculating
that day’s time frame. After estimating the time frame of each
active day, we superimpose all these time frames and consider
as the dominant time frame the set of hours that appears in
more than half of the cluster’s active days. This allows us to
avoid including insignificant hours, e.g., days where the user
happened to go to work a little earlier or later than usual. This
also allows us to handle users that have a more lax schedule
or work in shifts. We also account for users that work night
shifts which span two consecutive dates; we consider instances
of active time windows that span two days, have a duration of
up to eight hours [12], terminate by 07:00,° and are followed
by a period of inactivity of at least eight hours.*

Next, we exclude all tweets not belonging to the dominant
time frame. We also exclude clusters that repeatedly have daily
activity of more than ten hours, as they most likely do not
correspond to the user’s work (since we assume that most
jobs have eight-hour shifts). However, as sometimes people
are required to work overtime, or stay at work longer than
usual, we are flexible and only exclude clusters with more

3In the United States the night shift is typically 23:00-07:00 while the
European Union identifies it as including the 00:00-05:00 period [3].

“The US Department of Labor considers that a normal shift is followed
by “at least an eight-hour rest” [12] while the European Union’s 2003/88/EC
directive establishes a “minimum rest period of 11 consecutive hours.”

than 20% of their daily time frames exceeding the ten-hour
threshold (i.e., one workday per week) based on reported
average overtime hours in the US [2] and the European Union’s
limit for 48 hours per week. Finally, we select the cluster with
the largest number of active weeks as the user’s workplace.
It is important to note that our approach provides the first
adaptive approach that dynamically identifies shifts or common
working hours for each individual user, contrarily to previous
approaches that followed a simplistic approach of considering
fixed working hours for all users (e.g., “09:00-17:00”).

An example of the tweeting activity of two users from
both home and work is given in Figure 1. Both users’ locations
were correctly identified by LPAuditor. For the top user, tweets
from work fall in a well-defined time frame (08:00-16:00), in
contrast to tweets posted from home, which cover almost all
times of day. The bottom user exhibits a more erratic behavior
with different work shifts within a week, highlighting the need
for our dynamic approach that adapts to different patterns.

C. Identifying Highly-Sensitive Places

While identification of a user’s home and workplace is
a significant privacy risk, our goal is to also explore the
feasibility of uncovering personal user information that may
be considered even more sensitive. As such, we want to
identify other places a user has visited that could be used
to infer such sensitive information. LPAuditor identifies a
user’s Potentially Sensitive Clusters (PSCs) which are in close
proximity to highly-sensitive venues, and determines whether
the user actually visited these venues. To label a cluster as a
PSC, we estimate the cluster’s mid-point and use Foursquare’s
venue API to retrieve information about the nearest venues.

We consider venues that are within a 25 meter radius from
the cluster’s mid-point coordinates; we set a more restrictive
threshold compared to the key location clustering process to
avoid potential false positives due to the small number of
tweets per cluster and density of PSCs. In practice, if LPAu-
ditor is offered as an auditing tool to users, these thresholds
can be user-configurable to allow for flexibility for areas of
different venue density (e.g., downtown metropolitan areas vs
rural areas). The Foursquare API returns the name of each
venue as well as its type, selected from an extensive list of
predefined categories. As such, we have identified which of
the venues returned by the API are associated with sensitive
categories or subcategories (which are shown in Figure 8).

Content-based corroboration. Proximity to a sensitive
venue does not necessitate that the user has actually visited
it (at least on that occasion). It could quite possibly be a case
of simply passing by or visiting a different (potentially non-
sensitive) nearby venue. To determine if the user is associated
with the sensitive venue, we analyze the content of the cluster’s
tweets in an effort to capture terms that indicate the user’s
presence at that venue. It is important to note that despite the
user including some relevant keyword in the tweet, location
metadata allows attackers to obtain more context and infer
sensitive information that the user did not intend to disclose.

LPAuditor uses three manually-curated wordlists of related
terms based on numerous online domain-specific corpora that
contain keywords related to our sensitive categories. Specifi-
cally, our wordlists contain medical- and health-related terms,



terms associated with various religions, and sex/nightlife. We
remove relevant keywords that are overtly ambiguous in con-
text, as they can lead to false positives (e.g., “joint” may refer
to a part of the body, some type of establishment, or may be
drug-related). Our wordlists are available online.’

LPAuditor first pre-processes users’ tweets (i.e., tokeniza-
tion, lemmatization, removes punctuation, emojis, mentions,
stop-words and URLs) using the NLTK library. Then it uses
term frequency - inverse document frequency (tf-idf) to
identify the most significant terms within the tweets of each
PSC. For each cluster we consider the cluster’s tweets as the
document and the entirety of the user’s tweets as the collection
(with each cluster considered as a document). As tf—-idf
assigns a score to the terms of the cluster, we check the three
terms with the highest score against the respective wordlist, to
determine if the context of these terms can be associated with
a nearby sensitive venue.

Duration-based corroboration. Due to the sensitive na-
ture of these venues, users will not always include content in
their tweets that enables us to place them in a sensitive venue.
For this reason, we introduce another approach that does not
depend on the content of tweets, but on the repetitiveness and
duration of user visits to a specific geographic area, in order to
identify places the user has likely visited. More specifically,
with this approach we identify PSCs that have consecutive
tweets in the span of a few hours, which indicate that the user
has spent a considerable amount of time at that place. In order
to avoid cases where the users did not visit a sensitive place but
posted multiple tweets while passing by it, we exclude cases
of consecutive tweets that have been posted in short periods of
time (within five minutes). We also identify tweets posted from
the same cluster on different days, which shows that the user
tends to repeatedly visit that place. Obviously this approach
does not work for clusters with a single tweet, and it lacks the
additional confidence in placing the user at the sensitive venue
that we obtain with the content-based approach. Nonetheless,
it highlights a significant source of privacy leakage.

D. Implementation Details

LPAuditor has been designed as a completely modular
framework, allowing for each individual component to be
trivially changed or extended (e.g., incorporating a new data
source, or implementing a different clustering method etc.).
Our system has been fully implemented in Python, and all
collected data is stored into a Mongo database. In more detail,
we leverage the Tweepy package for interacting with Twitter’s
API and collecting users’ timelines. For the first-level cluster-
ing and address validation we rely on the Geopy package
(via which we interact with the ArcGIS and Google APIs),
while our second-level clustering is based on the default imple-
mentation of DBSCAN as provided by the scikit-learn
package. For collecting venue information LPAuditor uses the
Foursquare package, while the NLTK package is used for
all tweet preprocessing and procedures related to tf-idf. Given
the importance of scalability when processing large collections
of users, we have designed LPAuditor to be able to use multiple
API keys in parallel. This allows us to speed up the more
inefficient parts of the process which rely on communicating

Shttps://www.cs.uic.edu/~location-inference/

with external, and often rate-limited, APIs. Finally, as each
user is processed completely independently from other users at
all stages, multiple instances of our framework can be executed
in parallel for increasing efficiency.

IV. DATA COLLECTION

We first describe our automatically-collected Twitter
datasets, and then outline our methodology for manually creat-
ing a ground truth dataset used for the experimental evaluation.

Datasets. We used Twitter’s streaming API for collecting
a set of tweets within a bounding box that covers the mainland
area of the United States. While LPAuditor can be applied to
any country with similar working norms (e.g., shift duration)
we opted for users in the US as our sensitive location inference
also requires the tweet content and we currently only support
English. Furthermore, it is also the one country common across
the datasets of all the prior studies we compare to in Section V.
Nonetheless, an interesting future direction is to explore these
privacy risks for users in other countries.

An initial set of tweets was collected in November 2016,
through which we obtained 308,593 unique user identifiers
(UIDs). Then we collected each user’s profile information and
timeline (the 3,200 most recent tweets, according to Twitter’s
policy). This dataset contains 456,856,444 tweets, which have
been generated from 15,094 distinct sources (including unof-
ficial Twitter client apps and websites).

Apps may handle geolocation data differently as Twitter’s
Geo Guidelines [11] are neither mandatory nor enforceable. To
avoid inconsistencies, we only consider official Twitter apps
and Foursquare in this study, which also account for the vast
majority of collected tweets. After this filtering, we end up
with 290,162 users and 345,643,445 tweets. We break down
our dataset in Table I; users who posted tweets from multiple
apps are counted in all the respective categories. Figure 2 (left)
shows the number of tweets in each user’s timeline. We find
that only ~0.5% of the users have more than 3000 tweets, and
less than 0.06% reached Twitter’s API limit of 3,200.

As we are interested in the privacy implications that stem
from geolocation metadata, we identify all users with at
least one tweet containing GPS coordinates in the metadata.
We identified 87,114 such users, which have contributed
15,263,317 geotagged tweets in total. In Figure 2 (right) we
present the number of users’ geotagged tweets. Surprisingly
we find that for 30.03% of the users the Twitter API reveals
some precise geolocation information, with 8.01% of the users
having less than 10 geotagged tweets. We also observe that
15.55% of the users have between 10 and 250 geotagged
tweets, and approximately 5% and 2% of the users have more
than 330 and 655 geotagged tweets, respectively.

Users with many geotagged tweets may have patterns that
differ from those of users with a significantly lower number.
For this reason we conduct our analysis on two different sets of
users. The first set (Top-6K) consists of the top 6,010 users in
our dataset that have the most geotagged tweets (approximately
top 2% of users in Figure 2), while the second set (Low-10K)
consists of 9,841 randomly selected users that have between
10 and 250 geotagged tweets. We use these two sets of users
for our main analysis (instead of all collected users), due to the
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TABLE I: Breakdown of tweets’ sources in our dataset.

Application (source) | Geoloc. | Users Tweets
Twitter for Android v 99,979 | 50,188,992
Twitter for i0S 4 328,320 | 291,820,742
Twitter for Web X 253,616 | 39,655,850
Foursquare v 13,192 3,633,711
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Fig. 2: Total number of tweets per user (left), and the number
of tweets per user that are geotagged (right).

rate limits imposed by the API providers that we use for our
clustering process. Also, by including users with as few as 10
geotagged tweets, we can explore the privacy risk that users
face even when very few location data points are available.

Geotag accuracy. While certain location-based services
may add some form of noise or obfuscate the user’s loca-
tion [53], that is not the case with Twitter. The GPS coordinates
returned by the API match those provided by the user’s device.

Ground truth collection. As we aim to demonstrate the
true extent of this privacy issue by identifying key locations at
a postal address granularity, a significant challenge is obtain-
ing the ground truth for evaluating our accuracy. While our
home/work identification algorithms focus on spatiotemporal
characteristics, creating the ground truth mandates an analysis
of the tweets’ content. Due to strict requirements for veracity,
we did not resort to an automated process but opted for an
arduous and painstaking manual process that required over 6
weeks of continuous effort. While we have explicitly limited
our collection to publicly available data offered by the official
Twitter API, we took extra precautions during our manual
analysis phase for protecting users’ privacy. Specifically, users’
account information (name, username) was not included in the
content that was manually inspected, and references to other
users (i.e., tokens starting with “@”’) were removed as well.

In a nutshell, we started with users that explicitly men-
tioned in their tweets that they are at home, by matching
phrases such as “I’'m home”, “at home” etc. After identify-
ing users with clusters containing such tweets, we manually
reviewed all the tweets in these particular clusters. During the
manual inspection we took into account the context of a user’s
tweets for ensuring that these clusters indeed correspond to
a user’s home. Instead of identifying work clusters for other
users, we decided to focus this task on the users for which we
had already identified their home location, as that would allow
us to create a more complete dataset that contains both home
and work locations for each user. To that end, we followed
a similar approach and searched for phrases denoting work-
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related information, “at work”, “at the office”, “this job” etc.,

and manually inspected the tweets of the returned clusters.

Below we outline the workflow of our manual inspection
process for identifying users’ home and work locations. Our
goal was to establish a methodology that allows us to have
high confidence in the resulting labels. The content analysis
and location labeling was performed by two researchers inde-
pendently; in cases where the labels by the two researchers
did not match the user was discarded. We avoided potentially
ambiguous instances or cases with uncertainty, and built our
ground truth with users where both labellers agreed. We dis-
carded such instances as we set a strict requirement for correct
labels for our ground truth. However, discarding users was a
rare occurrence, as it is a fairly straightforward and intuitive
process for human annotators to identify home/work locations.
In more detail, we established the following workflow:

1) Apart from inspecting the tweets that contained one of
the seed phrases, we also inspected the cluster’s remaining
tweets. This allowed us to further increase our confidence
by identifying tweets where the user explicitly or implic-
itly referred to being at home or work (e.g., “just took
a shower”, “my boss just said” etc.). If we only found
implicit references, we required at least two such tweets.

2) To make our ground truth as complete as possible, we
also manually inspected all the tweets in users’ 10 largest
clusters, for identifying cases where users have multiple
homes or work clusters that were not already identified
during the previous task. Again we followed the same
approach as described in the previous step. In cases where
there were no other clusters with tweets indicating a
home or work location we were confident of our original
labeling, since there was only one cluster matching each
label. In cases where other clusters’ alluded to a potential
key location, we continued with the following process:

a) Temporal analysis. We explicitly analyzed the timeline
of clusters, and identified the periods during which each
cluster was active. This helped us identify cases where
users had changed residences, where multiple locations
had been labeled as homes but their active periods
did not overlap temporally. We also observed cases
where the identified home was not the user’s place of
residence, but could be considered a secondary home
(i.e., country/summer house, parents’ house). During
this step we also searched specifically for references
that allowed us to label the cluster as a secondary home
location (e.g., terms referring to parents).

b) Spatial analysis. In cases where more than one cluster
exhibited home-like patterns and had overlapping active
periods, we considered the spatial location of each clus-
ter. If the two clusters were close geographically, we
further investigated them to decide which one was the
user’s actual home and which was not (e.g., a friend’s
house that the user visits frequently). For clusters that
were far away from each other (e.g., in different cities),
we relied on the content for verification. A common
occurrence was clusters with home-related keywords
that exhibited continuous activity for a few days: e.g.,
users tweeting that they were at home, while visiting
their parents’ house during the holidays.

Overall, in the Home-Top dataset we have 1,004 users with
1,307 home clusters; 718 of these users have only one home
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Fig. 3: Number of clusters per user.

cluster, while 269 and 17 users have two and three homes,
respectively. This is not a surprising finding, as we collected
all the tweets in each user’s timeline (up to 3,200), and not
only tweets posted in a specific time period. Indicatively, we
have observed cases of users that have relocated (e.g., after
graduating), college students living in dorm rooms during
their first year and then moving to a house, and students
that regularly visit their family home. We also observed users
with multiple home locations in the Home-Low ground truth
dataset, but to a lower extent. Specifically, we identified 905
users that have one home cluster, 137 users with two, and one
user with three home clusters. For the two work ground truth
datasets, i.e., Work-Top and Work-Low, we identified 298 and
92 users, that have 363 and 98 work clusters respectively.

It is possible that our ground truth is not exhaustive (i.e.,
we may have missed certain locations). However, due to the
systematic and stringent manual inspection process, we are
certain that the labeled locations indeed correspond to users’
homes and workplaces. Our manual inspection has resulted
in ground truth datasets significantly more complete and fine-
grained than those from prior work [25], [34], [19], [20], [43].

V. EXPERIMENTAL EVALUATION

Here we analyze our datasets and discuss properties of
user’s geo-tagging behavior. Then we use our ground truth to
experimentally evaluate LPAuditor and compare to prior work.

Location clusters. To investigate the location patterns in
users’ tweeting behavior, we focus our analysis on understand-
ing the characteristics of users’ location clusters. We perform
this analysis for both the most active (Top-6K) and less active
(Low-10K) users. Figure 3 depicts the number of clusters per
user. As expected, highly active users tend to have a large
number of clusters. Specifically, only 4.45% of these users
have less than 40 location clusters, and around 28% less than
100 clusters. In more detail, we observe that around 50% of
the highly active users have more than 140 clusters, and about
25% and 10% of them have more than 200 and 280 clusters
respectively. If we only consider clusters that have more than
five tweets, we observe that about 50% of the users have more
than 11 such clusters, and 10% have more than 22 clusters.

When focusing our analysis on the Low-10K dataset, we
observe that these users have significantly less clusters than
the highly active users but seem to follow a similar pattern.
As shown in Figure 3 (right), about 10.7% have five or less
clusters, and about 50%, 25% and 10% of the users have
more than 21, 40 and 63 clusters respectively. Furthermore,
similarly to the highly active users, the number of clusters

TABLE II: Performance of home/work inference for ground
truth users, and ranks of the respective clusters.

Inferred Rank of clusters
Dataset Users clusters Precis. 1 2 3 4 5-10
Home-Top 1004 926 922% | 806 111 8 1 -
Home-Low 1043 969 929% | 911 49 8 - 1
Work-Top 298 164 55% 7 79 47 16 15
Work-Low 92 53 57.6% 4 31 11 6 1

drops significantly when considering only those clusters that
have more than 5 tweets. For both sets of users we find that
users tend to have a large number of clusters, out of which the
majority has a small number of tweets.

Figure 4 presents the percentage of users’ tweets in their
five largest clusters. We observe that for about 40% of the
users, more than half of their tweets belong to their top cluster,
while 47.77% of the users have more than 70% of their tweets
in their top 5 clusters. This phenomenon is observed in both
sets of users. In Figure 5 we explore the cluster sizes of all
users. Both datasets exhibit a power law distribution, with the
vast majority of clusters having only a few tweets and a small
number of clusters with a large number of tweets. These small
clusters will most likely not correspond to a user’s home and
work locations, as they appear to be visited rarely; however,
these locations are important from a privacy perspective, as
they allow an adversary to reconstruct a semantically-rich
location history, which can reveal highly sensitive information.
In fact, this is clear in Figure 6 that presents the distribution
of PSCs with regards to the number of their tweets. We find
that 67.10% of the PSCs have one tweet, while only 4.04% of
them have 10 or more (the most being health-related).

A. Home and Work Location Inference

To assess our methodology and measure the effectiveness
of LPAuditor we aim to pinpoint exact locations. Thus, we opt
for a “strict” evaluation of accuracy where a location is either
correctly or incorrectly identified. We do not calculate distance
errors as they are more suitable for coarse-grained approaches.

LPAuditor correctly identifies the home of 926 and 969
users from the two datasets, resulting in a precision of 92.23%
and 92.9% respectively. Thus apart from obtaining superior
granularity, our system is considerably more effective than
previous approaches as we will show. As our work inference
first excludes the home cluster, the outcome also depends on
the precision of the home inference. Our precision is 55.03%
and 57.6% for identifying workplaces in our ground truth. As
users typically tweet less when they are at work than when
they are at home (in our ground truth, home clusters contain an
average of 45% of tweets while work clusters contain 8%) our
effectiveness at identifying work is lower since other locations
frequented by the user can exhibit similar characteristics (e.g.,
restaurants, coffee shops, gyms). Table 11 presents the precision
of our home and work inference, as well as the rank of all the
correctly identified clusters. The clusters’ ranks are estimated
according to their size, such that rank 1 is the largest cluster
of the user, rank 2 is the second largest cluster and so on.
Also, we do not re-calculate cluster ranks after excluding home



1 ‘ Tpp-BK dgtaset_ 108 ‘ ‘ 1
0.8 | Top1cluster —— - S Top-6K dataset -
c 0.6 | Top3clusters 9 105 b\ Low-10K dataset ° 09l
O __ - iTop5 clusters - s __ Y
S 04 g o \\ 2‘-0'-
£G 02 g N S0 08}
[o R 0 == * * =2 3 \\ =
=0 Low-10K dataset 510 < P
=3 1 Ton 1 ciust —— o \\“ =2 07}
S35 08 [P ! Custer 5 10 “ L9 All PSCs
Es 06 Ppgc:“‘ers o g5 Medical
3° 04 |Top5olusters E 10' ww 3 08¢ Religion
O'g gl = 10° . 05 ‘ ngual
0 02 04 06 08 1 10° 10 102 103 10* 10° 10' 102 10°
Percentage of user’s tweets Number of tweets in cluster (log) Number of tweets in cluster (log)
Fig. 4: Tweets from users’ top clusters. Fig. 5: Tweets per cluster. Fig. 6: Tweets from PSCs.
. . . . 4 Top-6K dataset
clusters in the work identification phase, as we want to make 10 ome
dllrect comparisons between the results of the two approa.lches. Pl B Work ===
Finally home clusters have, on average, a maximum radius of S o2l I
59.55 meters and work clusters of 53.38, which drops to 19.25 =3 ;
meters for all clusters in our ground truth. g 10 g I H H H 1] H
. . . . @ 10° J A N O N O O O
Having established the precision of LPAudthr on our 3 . Low-10K dataset
ground truth datasets, we run our system on the main datasets 6 10 - Home
(Top-6K, Low-10K) after excluding the ground truth users. As JCERI | Work
can be seen in Figure 7, the majority of home clusters in both £ 10}
datasets are rank 1 clusters, which is consistent with the results = o' | é % g % H H H H
from the home ground truth. For the work clusters, only 3.26% oo LA N g il el el al el el g‘ﬂ

and 7.69% are rank 1, while most of them are rank 2 and a
considerable number occupy lower ranks, in both datasets. We
find that the detected clusters follow a similar rank distribution
in the two datasets, supporting the representativeness of our
ground truth. It should be noted though that while our work
ground truth explicitly contains users for which we have
identified their work, for the main datasets our system also
identifies locations that are not work in the strictest sense.
Specifically, we are able to identify locations for users that do
not work but have a location that can be considered a work
“substitute”, e.g., a college student attending classes.

Selection bias. Our methodology for creating the ground
truth could potentially result in selection bias, as it relies
on certain key phrases as a starting point for the manual
process. To examine whether the accuracy of our evaluation is
a byproduct of LPAuditor’s heuristics being “overfitted” to the
ground truth, we manually examine a random subset of users
identified from the main datasets (Top-6K, Low-10K). We
select 100 users and manually investigate their tweets to verify
whether the home and work labels assigned by our system are
correct. Following the same manual methodology we are able
to verify that 89 of the home labels indeed correspond to the
user’s actual home cluster. For the remaining 11 users we are
unable to characterize the label as correct or incorrect based
on the users’ tweets. For the work labels, we find that for 45
users the work cluster has been correctly identified while for
30 users the label is incorrect. For the remaining 25 users we
are not able to verify whether the label is correct or not.

While this manually verified sample is relatively small, we
find that the resulting accuracy is comparable to the accuracy
achieved by our system when evaluated against the ground
truth. Furthermore, these users are from our main datasets,
which exhibit a wide range of geotagging behavior, demon-
strating that our effectiveness is not tied to a specific dataset.
As LPAuditor’s underlying algorithms are based on common
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Cluster rank (based on size)

Fig. 7: Ranks of home and work clusters for our main datasets
(ground truth users have been excluded).

user behaviors and legislative/societal norms, we believe that
this manual verification further validates the generalisability of
our techniques and the correctness of our ground truth.

De-anonymization. While demonstrating the feasibility of
de-anonymizing Twitter users is not the focus of our work, we
conduct a small exploratory experiment. We aim to identify
which, if any, users in our ground truth datasets appear to be
pseudonymous. Specifically we want to identify users that do
not provide their full name, i.e., do not provide their last name
(we do not consider first names to be conclusive for identity).
We use the list provided by the US Census Bureau with the
most frequent surnames to filter out users that include their
last name in the full name section of their account.

After filtering 282 users remain, which we manually ex-
amine and exclude the ones that actually disclose a last name
that is not included in the Census list, or include their last
name in their username. We end up with 183 users that do not
explicitly reveal their identity on their Twitter accounts, which
constitutes a lower bound of the pseudonymous users in our
ground truth, due to potential false positives in our automated
filtering. Out of these users, LPAuditor was able to correctly
identify the home location of 171 users and the workplace of
23 users (to ensure privacy, the manual inspection of users’
names was conducted in “isolation” and not combined with
or mapped to any ground truth locations or other location
clusters). While these users might not be zruly pseudonymous
in reality (e.g., users with a pseudonym whose actual identity



TABLE III: Comparison between the precision achieved by LPAuditor and previously proposed approaches. We have implemented
all prior heuristics and applied them to our ground truth datasets to allow a direct comparison.

Heuristic Description Tol?ataseiow Proposed by
1 Cluster with the highest number of tweets 723% | 67.8% | [19], [20], [34], [39]
2 | Most tweets between 20:00-8:00 72.1% | 66.4% [45]
3 Most tweets between 24:00-7:00 69.3% | 54.7% [34]
4 | Last destination of the day (before 3am) 73.3% | 64.8% [34], [39]
5 Last destination of the day (w/o days with tweets between 24:00-7:00) 71.4% | 64.4% [34]
6 | Weighted PageRank for destinations 441% | 26.4% [34]
Home 7 | Weighted PageRank for origins 37.5% | 20.9% [34]
Most popular cluster in terms of unique days, during the Rest
8 | (2:00-7:59) and Leisure (19:00-01:59) time frames 73:1% | 64.9% (2]
9 | WMFV (best reported time frame: 24:00-5:59) 65% 50.9% [43]
10 | W-MEAN (best reported time frame: 24:00-5:59) 0.6% 14.7% [43]
11 | W-MEDIAN (best reported time frame: 23:00-5:59) 15.6% | 24.5% [43]
12 | LPAuditor’s Home detection without 2™ level clustering 73.7% | 69.3% this paper
13 | LPAuditor’s Home detection 922% | 92.9% this paper
Most popular cluster in terms of unique days, during the Active time
Work 14 frame (e.g., working hours, 08:00-18:59) 33.2% | 48.9% (2]
15 | Cluster with the second highest number of tweets 18.5% | 22.8% -
16 | LPAuditor’s Work detection without 2™ level clustering 32.2% | 30.4% this paper
17 | LPAuditor’s Work detection 55% 57.6% this paper

is well known within certain communities), this experiment
highlights another potential threat posed by location metadata.

Prior work. Apart from pinpointing locations with a gran-
ularity that is orders of magnitude more fine-grained than prior
work, it is important to also quantify the accuracy improve-
ments of our techniques. We implement the heuristics proposed
in prior work for identifying home and work locations that
leverage spatiotemporal patterns and apply them to our ground
truth; we do not compare to techniques that require other types
of data, like social ties [37], [36], as we do not collect such
data and those techniques are inherently very coarse-grained.
By running these heuristics on the same data, we are able to
conduct a direct comparison to previous techniques and avoid
the inaccuracy of simply comparing to their reported numbers.
It is important to note that we map tweets to postal addresses
before applying these previously-proposed heuristics, i.e., we
only apply our initial first-level clustering so as to remain as
faithful as possible to their original design.

As Table III shows, LPAuditor outperforms all heuristics
proposed in prior work for both home and work locations. The
simplistic approach of selecting the largest cluster as the home
(1) performs surprisingly well, and even outperforms some of
the other more complex heuristics. We also extended this logic
and evaluated the precision of considering the second largest
cluster as the workplace (14); this results in a precision of
18.45% and 22.82% in the Work-Top and Work-Low datasets
respectively. Heuristics (4) and (8) perform better than other
prior heuristics. The approaches proposed in [43] rely on
weights obtained from their data; to remain faithful to their
design, we replicate their approach and randomly select 22%
of our users as the sample dataset to calculate the weights and
the rest as the evaluation dataset. The significant difference
between their reported accuracy and our findings can be
attributed to their experiments being conducted on a dataset
from a very limited time frame and geographic area.

Our techniques present an improvement of 18.9%-91.6%
when inferring homes and 8.7%-21.8% for workplaces. In-
terestingly, in multiple cases LPAuditor presents a larger im-
provement over prior approaches for users that are not prolific
geotaggers (i.e., from the Low datasets), indicating the benefit
of our techniques when there is sparser availability of data.

To accurately quantify the effect of our second-level clus-
tering we also run our heurstics using only the first-level
clustering. LPAuditor’s home inference still outperforms all
previous approaches, both in the Home-Top and Home-Low
datasets, with an improvement of 0.4%-73.1%. On the con-
trary, heuristic (14) outperforms LPAuditor’s work inference
in both Work-Top and Work-Low datasets, by 1% and 18.5%
respectively. These differences can be attributed to the fact that
when a user’s location cluster is split into smaller (i.e. first-
level) clusters, our heuristics cannot entirely capture the true
behavior of that location, which further signifies the impor-
tance of our second-level clustering. As aforementioned, other
locations frequented by users during or near working hours
can exhibit work-like characteristics (e.g., gym, coffee shopts
etc.) affecting fine-grained approaches like ours when working
with sporadic location datasets. Our second-level clustering
allows our system to group data points that belong to the
same location but have been assigned to nearby locations due
to the displacement introduced by user mobility (e.g., tweeting
while leaving work) or GPS errors. In a sense, this can be seen
as enhancing the “signal”, thus allowing our system to better
capture the user’s behavior in each location. After applying
our second-level clustering, our results improve significantly
by 18.5% and 23.6% for Home-Top and Home-Low and by
22.8% and 27.2% for Work-Top and Work-Low respectively.

B. Inference of Sensitive Places

LPAuditor detected 6,483 potentially sensitive clusters
(PSCs) across our ground truth. Specifically, it identified 938
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Fig. 8: Potentially sensitive clusters, i.e., in close proximity to
venues belonging to a sensitive category.

(93.42%) Home-Top users with a total of 5,393 PSCs, and 516
(49.47%) users in Home-Low with 1,090 PSCs. This difference
between datasets is expected as users in the latter have fewer
geotagged tweets and considerably less clusters. Figure 8
breaks down the detected PSCs according to the category of the
associated venues. For PSCs that have more than one sensitive
venue in proximity, we first assign that PSC to the category
of the closest venue. We also plot the distribution if each PSC
is mapped to all sensitive venues in proximity (denoted as
“Multiple attribution”). When only considering the sensitive
venue with the shortest distance to the PSC’s coordinates, we
identify 5,094 health-related clusters, and 918 and 471 venues
related to religion and sex/nightlife respectively. Interestingly,
if we intersect these clusters with users’ ground truth work
locations we find 10 common instances in the Work-Low and
15 in the Work-Top sets; out of those only 3 from the latter set
were identified by our system through t f-idf. As such, we
believe that the vast majority of cases are users visiting these
sensitive venues, as opposed to working there.

Content-based corroboration. When using t f-idf and
our wordlists, we increase our confidence in placing users
at 545 of the detected PSCs. To assess these results we
identified the clusters that contain at least one keyword from
the respective wordlists and manually inspected the clusters’
tweets, to assert whether the user was actually referring to
a sensitive place. This manual inspection showed that our
approach had an overall precision of 80.36% and a 93.79%
recall, as presented in Table IV. Out of the 438 verified
sensitive venues, 375 were related to health, 51 and 12 to
religion and sex respectively. We observed a small number of
false positives due to ambiguous keywords that remained in our
wordlists (e.g., “shot”); however, we kept these terms as the
true positives significantly outweighed the false positives. Con-
trarily, in some cases our approach missed sensitive clusters
due to users that post sensitive content repeatedly from many
clusters (e.g., a religious user that tweeted religious content
from multiple locations), which resulted in these keywords
not being deemed significant by t £-idf. Furthermore, it is
important to stress that we obtain a lower bound on the number
of sensitive venues that a user has visited, as the user may
simply post tweets that do not contain the appropriate context.

Depending on the attacker’s end goal, there might not be
a need for absolute certainty of whether the user visited the
sensitive place. Even low confidence levels may be considered
a sufficient indicator; e.g., an insurance company looking at a
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TABLE IV: Results of content-based (CB) identification of
users visiting sensitive places, for our ground truth.

Home-Top Home-Low Total
Users in Dataset 1,004 1,043 2,047
PSCs 5,393 1,090 6,483
Users w/ PSCs 938 516 1,454
Guessed Clusters (CB) 464 81 545
Users w/ CB Clusters 328 72 400
True Positive (TP) 368 70 438
False Positive (FP) 96 11 107
False Negative (FN) 25 4 29
Precision (TP/TP+FP) 79.31% 86.41% 80.36%
Recall (TP/TP+FN) 93.63% 94.59% 93.79%
F-Score 85.87% 90.31% 86.55%

user’s online profile to decide on adjusting their premium or
purchasing their policy [6]. Nonetheless, as an extra source of
ground truth, we identified users’ tweets that were generated by
the Foursquare app and followed the typical format of a check-
in; we then compared the venues of these check-ins to the
clusters of sensitive nearby venues. This allowed us to verify
certain detected sensitive places irrespective of the content
posted from these clusters. This returned 105 sensitive clusters
for our ground truth users, 20 of which were also detected by
tf-idf. While this source of ground truth is considerably
small, it offers an interesting indication of user behavior; users
are extremely reserved when it comes to explicitly publishing
that they are at a sensitive location. This further exemplifies
the implications of the location metadata being exposed, as it
directly undermines privacy-conscious user behavior.

To further investigate tweeting behavior from sensitive
venues, we infer PSCs visited by the remaining users from
the Top-6K and Low-10K datasets. Our system identified
21,863 PSCs for 4,418 users from Top-6K and through CB
corroboration identified 1,512 of them as sensitive clusters that
were visited. Of those, 1,282 pertain to health, 196 to religion
and 34 to sex. Similarly for the users from Low-10K, we
identified 6,918 PSCs, with 474 being flagged by our system,
with 341 related to health, 115 to religion, and 18 to sex.

Duration-based corroboration. When using the duration-
based approach (DB), as can be seen in Table V, we identified
691 users from the Home-Top and 205 from the Home-Low
dataset that have repeatedly visited or spent a considerable
amount of time at 1,699 and 276 PSCs respectively. Similarly,
in the Top-6K and Low-10K datasets, we identified 3,012 and
1,672 users that have visited 7,020 and 2,337 such places. It
should be noted though that these numbers constitute a lower-
bound estimation, as the duration-based approach does not take
into consideration PSCs that only contain a single tweet.

We observe that 53.44% and 53.9% of the PSCs detected
by the content-based approach (i.e., CB clusters) for the
Home-Top and Top-6K datasets respectively, are among the
visited clusters returned by the duration-based approach (DB
clusters). For the Home-Low and Low-10K datasets, 44.44%
and 47.25% of the clusters detected with the content-based
approach have been also detected by the duration-based ap-



TABLE V: Results of duration-based (DB) identification of
users visiting sensitive places, for all datasets.

Home-Top Home-Low Top-6K Low-10K

Visited Clusters (DB) 1,699 276 7,020 2,337
e Medical 1,307 194 5,193 1,626
e Religion 245 56 1,176 493
e Sex/nightlife 147 26 651 218
Users w/ DB Clusters 691 205 3,012 1,672
Common CB/DB Clusters 53.44% 44.44% 53.9% 47.25%
Users w/ CB/DB Clusters 86.89% 59.72% 86.26% 65.88%

proach. Employing both approaches can increase confidence in
identifying sensitive places the users have visited. For scenar-
ios requiring higher levels of confidence, attackers can select
the intersection of the sets returned by the two approaches.
Another noteworthy observation is that the DB approach
results in a higher ratio of sex-related clusters compared to CB,
which indicates that users are reluctant to explicitly mention
such venues, further highlighting the risk of geotagged tweets.

Contextual privacy loss. A significant implication of this
inference is that location metadata can amplify the loss of pri-
vacy by revealing sensitive details or additional context about
the tweet’s content that might not match the user’s intended
level of disclosure. While we found this to be common across
most cases of sensitive clusters we identified, it is not our
goal to quantify or exhaustively enumerate this phenomenon.
Instead, we anecdotally refer to a few representative examples
that highlight this dimension of privacy leakage. In one case,
the user expressed negative feelings about his/her doctor, while
the GPS coordinates place the user in the office of a mental
health professional. In another example, the user complained
about some blood tests, while being geo-located at a rehab
center. Also, geotagged religion-based tweets can reveal the
type of that place of worship (e.g., mosque, synagogue) and
may even point to a specific denomination. However, even if
users are cautious and nothing sensitive is disclosed in the
tweets, the location information obtainable with our duration-
based approach can result in significant privacy loss.

C. Impact of Historical Data

During our analysis we found that Twitter app versions
released prior to April 2015 automatically include GPS coor-
dinates in tweets tagged with a coarse location. The tweets
have both a coarse-grained label (e.g., city) and coordinates in
their metadata. Furthermore, that information is not visible in
the app or web version. Thus, users are completely oblivious to
the public availability of this sensitive data. In newer versions
users have to explicitly opt to include GPS information on
a per-tweet basis. The apps with a more privacy-respecting
behavior were released on April 15" for iOS and the 20" for
Android. Nonetheless, the historical metadata collected from
prior versions remains publicly accessible through the API.

Unavoidable privacy leakage. As shown in Figure 9 user
behavior changes after April 2015, with far fewer tweets with
precise location, and users tagging tweets with the newly
introduced point-of-interest (POI) that denotes locations of
varying granularity. Table VI shows that there is significant
change, with a 35-fold reduction in the ratio of tweets that
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Fig. 9: Granularity of location for all geotagged tweets.

TABLE VI: Tweets with GPS coordinates depending on Twit-
ter’s policy on including precise location metadata.

Dataset Before 4/2015  After 4/2015
All tweets 24.98% 1.35%
Coarse-grained tweets 99.9% 2.85%

contain GPS coordinates after the release dates of the apps
with the privacy-respecting approach. Since we do not have
the ability to detect each user’s app version, we first separate
the data on the official release date for each platform (i.e., we
take into account if the user is on Android or iOS). While some
users may have delayed updating their app, that would only
increase the ratio of tweets with GPS; thus, the actual reduction
of tweets with GPS is even higher, further highlighting the
unavoidable privacy violation that users faced due to Twitter’s
poor handling of location data. While we expected that all
coarse-grained tweets from before 04/2015 would contain GPS
coordinates, we found that ~0.1% do not. These were all
from before 08/2010 indicating the point in time when Twitter
started the practice of appending GPS data to coarse-grained
tweets. Consequently this privacy-invasive policy persisted for
almost 5 years until Twitter gave users greater control over
the location information they exposed. Nonetheless, users with
older devices or versions of the app are still exposing this type
of data, while all users’ data remains accessible online.

Historical data. We explored the impact of Twitter main-
taining and publicly sharing historical location metadata, by
calculating how many users would remain vulnerable if GPS
coordinates were not included in coarse-grained tweets. In
Figure 10 we first look at the number of days that have passed
since the last tweet from a home/work location. We find that
56.57% and 68.45% of the users posted their last tweet from
home right before the release of the newer app version, a large
percentage around the dates of the app release, and only a small
number after that. As we do not have information regarding the
date each user installed the newer app version on their device,
we cannot know the exact numbers. However, it is evident
that the majority of users stopped posting tweets with precise
location information from their home and work locations.

To further investigate how users’ behavior changed since
Twitter changed its policy, we identified the users that have
posted tweets with coordinates after the app release date (and
the following weeks) and ran LPAuditor only on the tweets
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Fig. 10: Days passed since each user’s most recent tweet from
a home/work location.

TABLE VII: Home inference using geotagged tweets posted
after the new geolocation policy of Twitter.

Dataset Date Users Homes Coverage
Home-Top Release 602 333 35.96%
Home-Top  +4 Weeks 155 68 7.34%
Home-Low Release 394 239 24.66%
Home-Low  +4 Weeks 116 62 6.39%

posted after those dates. As can be seen in Table VII, as users
started updating their apps, the number of users posting tweets
with precise location drops rapidly. Indicatively, only 15.43%
and 11.12% of the users in the two datasets continued posting
such tweets four weeks after the release of the new app. When
using only tweets posted at least four weeks after the app
release, we were able to correctly identify the home of 7.34%
and 6.39% of the users that are identified when all data is used.

Regarding the “freshness” of historical data, it is important
to note that even if some of the users’ locations have changed
(e.g., a user has moved to a different home), users can still be
identified by that data, and the inferred sensitive information
does not “expire”. The sensitive user traits, actions or beliefs
that can be inferred by the three categories that we explore will
still characterize the users regardless of the current location of
their home or workplace. Even for ephemeral characteristics
that no longer hold true, exposure of that sensitive information
can still affect users (e.g., certain cured medical issues remain
social taboos). As such, given the adage that “the Web never
forgets”, Twitter’s invasive privacy policy cannot be dismissed
as a case of a vulnerability that has been fixed. As long as this
historical data persists online, users will continue to face the
significant privacy risks that we have highlighted in this paper.

D. Performance evaluation

To evaluate our system’s performance we randomly se-
lected 1000 users from all users with geotagged tweets and
measured the time required by each LPAuditor module, and
the total time, for completing the entire process. As expected,
this time depends on the number of tweets and clusters of
each user; as such, we randomly chose the users to reflect a
representative distribution. As Figure 11 shows, the most time
demanding operations are those of collecting tweets, collecting
PSCs, and the first-level clustering all of which rely on the use
of third-party APIs (i.e., network communication, rate limits,
etc.). Contrarily, the time required for the other steps are in the
order of milliseconds, which can be considered as negligible.
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Fig. 11: Time required by LPAuditor for each phase of the
process. The reported numbers are for a subset of 1,000 users
randomly selected from all the users with geotagged tweets.

Using a commodity desktop, LPAuditor requires less that
12 seconds for collecting all the tweets of roughly half the
users, and less than 20 seconds for around 98% of the users.
Furthermore, for the collection of PSCs it takes up to six
seconds for half of the users, and more than 29 and 66 seconds
for 15% and 5% of the users respectively. For the process of
clustering, our system takes up to 35 seconds for about 50%
of the users, and more than 164 and 305 seconds for 15% and
5% of the users. To that end, when considering the total time
spent, LPAuditor takes less than 52 seconds for half of the
users, and more than 207 and 385 for 15% and 5% of them
(users with a very large number of tweets and clusters). Our
system can complete the whole process in less than a minute
for half the users, while approximately 95% of them can be
processed within six minutes. This highlights the severity and
scale of the privacy threat we have explored, as adversaries
could trivially run such attacks for a massive number of users.

VI. DISCUSSION AND FUTURE WORK

Twitter privacy leakage mitigation. The pitfalls of
location-sharing have long troubled researchers. And while
our work demonstrates the extent of the risks users face,
it also highlights an important aspect of the issue that, to
our knowledge, has not been explored before. While previous
work has mainly focused on users knowingly or inadvertently
sharing location data in social platforms, we also identified
an inconspicuous form of privacy leakage that is invisible
to users. Even though Twitter has since opted for a more
privacy-oriented policy where users have to explicitly choose
to append GPS coordinates in tweets, the availability of
historical metadata severely undermines the benefits of this
more recent approach. Apart from the fact that after users are
given the choice they are 18.5 times less likely to include GPS
coordinates, ~93% of the users identified by LPAuditor are due
to the historical tweets geotagged by Twitter. These findings
underline the risks of web services publicly over-sharing data
through their APIs, which poses an alarming flip side to the
common problematic behavior of over-collecting data [61].

We found that Twitter mentions this behavior [9] and de-
scribes the process for removing location data [10]. However,
they warn that “deleting location information on Twitter does



not guarantee the information will be removed from all copies
of the data on third-party applications or in external search
results”. As data brokers continuously collect and sell Twitter
data, even if users remove all location metadata, those changes
might not be reflected in the versions maintained by others.

Ideally, our study will act as a deterrent against publishing
sensitive metadata not explicitly broadcast by users (interest-
ingly, a recent study explored how other types of metadata can
uniquely identify a user [51]). While the availability of public
Twitter data has facilitated innovative and impactful research,
the privacy threats that users face remains an important issue.
This is further exacerbated by the significant ramifications for
users that rely on the pseudonymous nature of Twitter [47].
While Twitter offers a partial solution for mitigating the
privacy risks of this (historical) data, there exists no foolproof
course of action for completely eradicating this threat.

Applicability. The techniques used by our system for in-
ferring users’ home and work locations are not tied to Twitter,
but can be readily applied to any (sparse) location dataset that
contains periodic GPS entries and timestamps. For datasets
that contain very frequent snapshots of a user’s location (e.g.,
collected every couple of seconds), a simple form of sampling
should be sufficient for reducing the computational overhead
that can arise. And while our content-based technique for
inferring sensitive locations is not applicable to every service
as it relies on the tweets’ content, our duration-based technique
can also be applied to any location dataset.

LPAuditor adoption. Recent headlines regarding third
parties harvesting personal user information in services like
Facebook [8] have reignited the public discourse over user
privacy and data protection. Facebook has announced plans
for offering users more control over their data [5] and Twitter
is aiming for increased transparency due to the new GDPR
requirements [7]. As such, it is evident that there is need for
tools and techniques that can inform users about what data
of theirs is exposed. And while certain cases of data exposure
can be self-evident, sensitive information inference may be less
obvious. To that end, LPAuditor can be incorporated by any
location-based service or social network for clearly notifying
users of such exposure. For services that do not obfuscate
locations, users can also explore user-side location-obfuscation
tools like LP-Doctor [27] or an app for location spoofing [55].

Ethical considerations and disclosure. As is the case with
any study that explores user privacy, it is important to address
the ethical implications of our work. A precise description of
our study and experimental protocol were submitted to and
approved for exemption by our university’s IRB. Moreover,
apart from only collecting publicly available data offered by
the official Twitter API, all usernames were removed during
the manual annotation process. This ensured that we would
not be able to identify/deanonymize any users. At the same
time, all collected data and results from our analysis were
stored on machines with up-to-date software, encrypted hard
drives, where access was strictly limited to the authors and
only possible from two white-listed internal IP addresses using
authorized SSH keys. We believe that our research presents
minimal risk while having the potential for significant benefits
to users; we have submitted a report to Twitter outlining our
findings and substantiating the need to purge this historical
data. We also deleted all the results of our analysis, the ground
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truth dataset, and the entirety of the collected Twitter data, to
eliminate any potential of future privacy risks to the users.

VII. RELATED WORK

Prior work has proposed approaches for identifying home
and work locations that range from inspecting social graphs,
to studying check-ins and precise geolocation data (a survey
can be found in [74]). As certain users do not geotag their
tweets, previous work has also tried to infer home locations
based on tweet content [18], [46], [63] or other information like
social ties [33], [17] or check-in behavior [40]. However, these
studies only infer key locations at a very coarse granularity.
Furthermore, the inference of sensitive information from other
location data points has not been explored.

Location inference. In a study investigating mobility pat-
terns, Cho et al. [20] considered geographic cells of 625km?,
and considered a home location to be the average position
of the cell with the most check-ins. Pontes et al. [56] used
Foursquare check-ins and correctly inferred the home city of
~T78% of users. By considering that users are located at their
home at night and near their office during working hours,
Liu et al. [44] identified the key locations of 68% of users
within a distance of 2.5 km. Efstathiades et al. [25] followed
a similar approach for detecting users’ home and work at
a postcode granularity using three Twitter datasets from the
Netherlands, London, and the Los Angeles county. Given that
the average size of a postal code area in LA is approximately
14.66km* and includes over 37K residents (based on data
from [21]), it is evident that postcode-level granularity is still
very coarse. While our approach for detecting key locations is
based on spatiotemporal analysis, similarly to prior work, we
are the first to propose an approach that considers the vertical
“widespreadness” of user activity for detecting homes, as well
as a dynamic and adaptive approach for detecting workplaces.

Apart from LPAuditor outperforming previously proposed
techniques (as shown in Section V), our experimental evalua-
tion and comparative study was conducted on a ground truth
dataset that is significantly more complete and fine-grained
than the datasets used in prior studies. In detail, the ground
truth constructed in [25] was at a postcode level, while Cheng
et. al [19] did not actually verify their home selection with
some form of ground truth. Similarly, in [20] the authors
constructed a ground truth using 25x25km cells and stated
that “manual inspection shows that this infers home locations
with 85% accuracy” but did not include more details on how
that was done. Furthermore, the datasets in [39], [34], [43]
all contained only home locations, with the dataset by Lin
et al. [43] being based solely on the visual inspection of the
GPS data points. While in [34] the authors also relied on
manual inspection of tweet content for identifying the home
locations, that process was conducted by Amazon Mechanical
Turk workers who were only shown a subset of five tweets
from a cluster, whereas our manual inspection was conducted
collectively on the entirety of tweets assigned to each cluster.

Location and de-anonymization. The problem of identify-
ing key locations has also been explored in different settings,
e.g., using continuous GPS data collected from receivers in
cars [39] or wearables [41]. Golle and Partridge built upon
these findings and explored how users can be identified from



different granularities of anonymized census data [30]. De
Montjoye et al. [24] explored the uniqueness of user mobility
patterns in a 15-month dataset for 1.5M people, and found
that four coarse-grained spatiotemporal points can uniquely
differentiate 95% of the users in the set. Previously, Chong et
al. [67] reported a 93% predictability in mobility by measuring
the entropy of users’ trajectories. Rossi et al. [62] demonstrated
the feasibility of identifying users within mobility traces by
using movement data including speed, direction and distance
of travel and found that as little as two location points may be
sufficient to uniquely identify users. Zang et al. [72] leveraged
an anonymized three-month dataset of mobile call records and
discovered that as few as the fop-2 most frequented locations
(even at coarse granularities) can re-identify a user.

User behavior. Prior work also explored how users interact
with or disclose location data, and the feasibility of social-tie
inference. Liccardi et al. [42] explored how different ways
of visualizing data affected users in inferring the type of a
location (home, work, etc). Ahern et al. [13] investigated how
users select the privacy settings for uploaded photos, and found
that users are more likely to set as private photos that are
taken at frequently photographed locations while tending to
set photos from less frequented locations public. Consolvo
et al. [22] found that users were willing to disclose exact
locations, but that study focused on a different setting where
users were asked about sharing information with friends,
family and colleagues. Tang et al. [68] identified how users
adapt their location sharing behavior and explored the different
ways and levels of granularity at which users decide to share
their location under different hypothetical scenarios. Cheng et
al. [19] conducted a large-scale study of location data and
studied mobility patterns and the correlation between check-
ins and message content and sentiment. Sadilek et al. [64]
proposed a probabilistic human mobility model for predicting
users’ social links and locations. That model considers users
who disclose GPS coordinates as noisy sensors for inferring
the location of their friends. Several other works (e.g., [23],
[52], [65], [73]) leverage spatiotemporal data for inferring
social ties. Recently Backes et al. [15] developed an attack for
inferring social relationships from mobility data, while Aronov
et al. [14] leveraged relationships and other information such as
co-location at events to infer other potentially visited locations.

Aggregate Location Data. Prior work has also studied
how aggregate location time-series can lead to significant
privacy loss. Pyrgelis et al. [58] presented a novel methodology
to study membership inference on such data, by formalizing
the problem as a distinguishability game, and showed that
such attacks are indeed feasible and can lead to significant
privacy loss depending on different factors, such as the adver-
sary’s prior knowledge, aggregation group sizes etc. Shokri et
al. [66] investigated membership inference, and used a dataset
of Foursquare check-ins to evaluate their attack. In another
work, Pyrgelis et al. [59] studied how aggregate location
data can be leveraged to localize and even profile individual
users, under different adversarial knowledge scenarios. Finally,
Xu et al. [70], demonstrated that it is possible to recover
individual user trajectories from aggregate location data with
high accuracy, based on the key assumptions that users’ daily
trajectories tend to be regular but also differ significantly
among users. They also highlight that the uniqueness of the
recovered trajectories enable re-identification attacks.
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VIII. CONCLUSIONS

We have investigated the privacy threats that arise from pre-
cise location (meta)data being publicly accessible in Twitter’s
API. By developing novel techniques for identifying a user’s
exact home and work location, and inferring sensitive infor-
mation through the reconstruction of a user’s location history,
LPAuditor highlights the true extent of the risk of exposing
such information. To make matters worse, our experimental
evaluation revealed how Twitter’s invasive policy of including
precise location data in previous app versions has significant
implications, as it results in an almost 15-fold increase in the
number of users whose key locations are successfully identified
by our system. Given that users are most likely oblivious
to this privacy leakage, it is important to shed light on this
privacy-invasive practice. We hope that our work will serve as
a cautionary tale, equipping users with the means to manage
their personal data and avoid the risks of public exposure.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
valuable feedback. Special thanks to our shepherd Emiliano
De Cristofaro, for all his help. The research leading to these
results has received funding from European Union’s Marie
Sklodowska-Curie, grant agreement No 690972, and Horizon
2020 Research & Innovation Programme under grant agree-
ments No 780787 and No 740787, the Defense Advanced Re-
search Projects Agency (DARPA) ASED Program and AFRL
under contract FA8650-18-C-7880. This paper reflects only the
view of the authors and the funding bodies are not responsible
for any use that may be made of the information it contains.

REFERENCES

(1]
(2]
(3]
(4]
(31

“ArcGIS - Online Geocoding Service,” http://geocode.arcgis.com.
“Circadian - Overtime and the U.S. Work Week,” http://bit.ly/2BOh5a9.
“EU - Working Hours,” http://bit.ly/2BMZ6ku.

“Google Maps APIs - Geocoding Service,” http://bit.ly/2Rt9TpC.

“Reuters - Facebook to give users more control over personal informa-
tion,” https://reut.rs/2SIRyKU.
[6] “The Economist - Very Personal Finance,” https://econ.st/2FXRcsR.

[71 “The Hill - Twitter announces updated privacy policy ahead of new EU

laws,” http://bit.ly/2FXZ1yK.

“The New York Times - Facebook and Cambridge Analytica: What You
Need to Know as Fallout Widens,” https://nyti.ms/2BNd45Q.

“Twitter - Adding location to your Tweets,” http://bit.ly/2QDftbC.
“Twitter - Adding your location to a Tweet,” http://bit.ly/2BS05jH.
“Twitter - Developer terms - Geo guidelines,” http://bit.ly/2Ssz3EY.
“US Department of Labor - Occupational Safety,” http://bit.ly/2FVENj.
S. Ahern, D. Eckles, N. S. Good, S. King, M. Naaman, and R. Nair,

“Over-exposed?: privacy patterns and considerations in online and
mobile photo sharing,” in Proceedings of ACM CHI, 2007.

B. Aronov, A. Efrat, M. Li, J. Gao, J. S. B. Mitchell, V. Polishchuk,
B. Wang, H. Quan, and J. Ding, “Are friends of my friends too
social?: Limitations of location privacy in a socially-connected world,”
in Proceedings of Mobihoc, 2018.

M. Backes, M. Humbert, J. Pang, and Y. Zhang, “walk2friends: Inferring
social links from mobility profiles,” in Proceedings of ACM CCS, 2017.
A.J. Blumberg and P. Eckersly. (2009) On Locational Privacy, and How
to Avoid Losing it Forever. [Online]. Available: https://bit.ly/2UgOIce
J. Chen, Y. Liu, and M. Zou, “Home location profiling for users in
social media,” Inf. Manage., vol. 53, no. 1, pp. 135-143, Jan. 2016.
Z. Cheng, J. Caverlee, and K. Lee, “You are where you tweet: A content-
based approach to geo-locating twitter users,” in ACM CIKM ’10.

(8]
(91
[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]


http://geocode.arcgis.com
http://bit.ly/2BOh5a9
http://bit.ly/2BMZ6ku
http://bit.ly/2Rt9TpC
https://reut.rs/2SlRyKU
https://econ.st/2FXRcsR
http://bit.ly/2FXZ1yK
https://nyti.ms/2BNd45Q
http://bit.ly/2QDftbC
http://bit.ly/2BS05jH
http://bit.ly/2Ssz3EY
http://bit.ly/2FVFNtj
https://bit.ly/2UgOIce

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Z. Cheng, J. Caverlee, K. Lee, and D. Z. Sui, “Exploring millions of
footprints in location sharing services,” in Proceedings of ICWSM, 2011.
E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: User
movement in location-based social networks,” in ACM KDD ’11.

City-Data.com, “Los Angeles Zip Code Map - Locations, Demograph-
ics,” http://www.city-data.com/zipmaps/Los- Angeles-California.html.
S. Consolvo, I. E. Smith, T. Matthews, A. LaMarca, J. Tabert, and
P. Powledge, “Location disclosure to social relations: why, when, &
what people want to share,” in Proceedings of ACM CHI, 2005.

D. Crandall, L. Backstrom, D. Cosley, S. Suri, D. Huttenlocher, and
J. Kleinberg, “Inferring social ties from geographic coincidences,”
PNAS, vol. 107, pp. 2243641, 12 2010.

Y.-A. De Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel,
“Unique in the crowd: The privacy bounds of human mobility,” Scien-
tific reports, vol. 3, p. 1376, 2013.

H. Efstathiades, D. Antoniades, G. Pallis, and M. D. Dikaiakos, “Iden-
tification of key locations based on online social network activity,” in
Proceedings of IEEE/ACM ASONAM, 2015.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algo-
rithm for discovering clusters a density-based algorithm for discovering
clusters in large spatial databases with noise,” in ACM KDD 1996.

K. Fawaz, H. Feng, and K. G. Shin, “Anatomization and protection of
mobile apps’ location privacy threats,” in USENIX Security, 2015.

FCC, “Indoor Location Accuracy Benchmarks,” http://bit.ly/2DZDxyD.

G. Friedland and R. Sommer, “Cybercasing the joint: On the privacy
implications of geo-tagging,” in Proceedings of USENIX HotSec, 2010.

P. Golle and K. Partridge, “On the anonymity of home/work location
pairs,” in PerCom ’09.

R. Gross and A. Acquisti, “Information revelation and privacy in online
social networks,” in Proceedings of ACM WPES, 2005.

M. Gruteser and D. Grunwald, “Anonymous usage of location-based
services through spatial and temporal cloaking,” in ACM MobiSys '03.
Y. Gu, Y. Yao, W. Liu, and J. Song, “We know where you are:

Home location identification in location-based social networks,” in
Proceedings of ICCCN, 2016.

T. Hu, J. Luo, H. Kautz, and A. Sadilek, “Home location inference from
sparse and noisy data: Models and applications,” in ICDMW ’15.

C. Huang, “Facebook and twitter key to arab spring uprisings: report,”
in The National, vol. 6, 2011.

C. Huang, D. Wang, and J. Tao, “An unsupervised approach to inferring
the localness of people using incomplete geotemporal online check-in
data,” ACM Trans. Intell. Syst. Technol., vol. 8, no. 6, Aug. 2017.

C. Huang, D. Wang, S. Zhu, and D. Y. Zhang, “Towards unsupervised
home location inference from online social media,” in Big Data ’16.
B. Krishnamurthy and C. E. Wills, “Privacy leakage in mobile online
social networks,” in Proceedings of WOSN, 2010.

J. Krumm, “Inference attacks on location tracks,” in PerCom '07.

R. Li, S. Wang, H. Deng, R. Wang, and K. C.-C. Chang, “Towards
social user profiling: Unified and discriminative influence model for
inferring home locations,” in Proceedings of ACM KDD, 2012.

L. Liao, D. Fox, and H. Kautz, “Location-based activity recognition,”
in Proceedings of NIPS, 2005.

I. Liccardi, A. Abdul-Rahman, and M. Chen, “I know where you live:
Inferring details of people’s lives by visualizing publicly shared location
data,” in Proceedings of ACM CHI, 2016.

J. Lin and R. G. Cromley, “Inferring the home locations of twitter users
based on the spatiotemporal clustering of twitter data,” TGIS ’17.

H. Liu, Y. Zhang, Y. Zhou, D. Zhang, X. Fu, and K. K. Ramakrishnan,
“Mining checkins from location-sharing services for client-independent
ip geolocation,” in IEEE INFOCOM, 2014.

F. Luo, G. Cao, K. Mulligan, and X. Li, “Explore spatiotemporal and
demographic characteristics of human mobility via twitter: A case study
of chicago,” Applied Geography, vol. 70, pp. 11 — 25, 2016.

J. Mahmud, J. Nichols, and C. Drews, “Home location identification of
twitter users,” ACM Trans. Intell. Syst. Technol., vol. 5, no. 3, 2014.

W. R. Marczak, J. Scott-Railton, M. Marquis-Boire, and V. Paxson,

15

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

(591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

“When governments hack opponents: A look at actors and technology,”
in Proceedings of USENIX Security, 2014.

K. Minami and N. Borisov, “Protecting location privacy against infer-
ence attacks,” in Proceedings of ACM WPES, 2010.

S. Patil, G. Norcie, A. Kapadia, and A. Lee, ‘““check out where
i am!”: Location-sharing motivations, preferences, and practices,” in
Proceedings of ACM CHI, 2012.

S. T. Peddinti, K. W. Ross, and J. Cappos, “’on the internet, nobody
knows you’re a dog”: A twitter case study of anonymity in social
networks,” in Proceedings of ACM COSN, 2014.

B. Perez, M. Musolesi, and G. Stringhini, “You are your metadata:
Identification and obfuscation of social media users using metadata
information,” in Proceedings of ICWSM, 2018.

H. Pham, C. Shahabi, and Y. Liu, “Ebm: An entropy-based model to
infer social strength from spatiotemporal data,” in ACM SIGMOD ’13.
I. Polakis, G. Argyros, T. Petsios, S. Sivakorn, and A. D. Keromytis,
“Where’s wally?: Precise user discovery attacks in location proximity
services,” in Proceedings of ACM CCS ’15.

I. Polakis, P. Ilia, Z. Tzermias, S. Ioannidis, and P. Fragopoulou, “Social
Forensics: Searching for Needles in Digital Haystacks,” in Proceedings
of BADGERS, 2015.

1. Polakis, S. Volanis, E. Athanasopoulos, and E. P. Markatos, “The
man who was there: validating check-ins in location-based services,” in
ACSAC 13, 2013.

T. Pontes, M. Vasconcelos, J. Almeida, P. Kumaraguru, and V. Almeida,
“We know where you live: Privacy characterization of foursquare
behavior,” in UbiComp ’12.

V. Primault, A. Boutet, S. B. Mokhtar, and L. Brunie, “The long road
to computational location privacy: A survey,” IEEE COMST, 2018.

A. Pyrgelis, C. Troncoso, and E. D. Cristofaro, “Knock knock, who’s
there? membership inference on aggregate location data,” in NDSS 8.
——, “What does the crowd say about you? evaluating aggregation-
based location privacy,” PoPETs, vol. 2017, no. 4, pp. 156-176, 2017.
J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes, “Recon:
Revealing and controlling pii leaks in mobile network traffic,” in
Proceedings of ACM MobiSys, 2016.

W. Roberds and S. L. Schreft, “Data breaches and identity theft,”
Journal of Monetary Economics, vol. 56, no. 7, pp. 918-929, 2009.
L. Rossi, J. Walked, and M. Musolesi, “Spatio-temporal Techniques for
User Identification by means of GPS Mobility Data,” EPJ Data Science,
vol. 4, no. 11, August 2015.

K. Ryoo and S. Moon, “Inferring twitter user locations with 10 km
accuracy,” in Proceedings of WWW, 2014.

A. Sadilek, H. Kautz, and J. P. Bigham, “Finding your friends and
following them to where you are,” in ACM WSDM ’12.

S. Scellato, A. Noulas, and C. Mascolo, “Exploiting place features in
link prediction on location-based social networks,” in ACM KDD ’11.
R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in /[EEE S&P ’17.
C. Song, Z. Qu, N. Blumm, and A.-L. Barabdsi, “Limits of predictability
in human mobility,” Science, vol. 327, no. 5968, pp. 10181021, 2010.
K. P. Tang, J. Lin, J. I. Hong, D. P. Siewiorek, and N. Sadeh,
“Rethinking location sharing: exploring the implications of social-driven
vs. purpose-driven location sharing,” in UbiComp ’10.

S. Vieweg, A. L. Hughes, K. Starbird, and L. Palen, “Microblogging
during two natural hazards events: What twitter may contribute to
situational awareness,” in Proceedings of ACM CHI, 2010.

F. Xu, Z. Tu, Y. Li, P. Zhang, X. Fu, and D. Jin, “Trajectory recovery
from ash: User privacy is NOT preserved in aggregated mobility data,”
in Proceedings of WWW, 2017.

P. A. Zandbergen, “Accuracy of iphone locations: A comparison of
assisted gps, wifi and cellular positioning,” Trans. in GIS, vol. 13, 2009.
H. Zang and J. Bolot, “Anonymization of location data does not work:
A large-scale measurement study,” in Proceedings of MobiCom ’11.
Y. Zhang and J. Pang, “Distance and friendship: A distance-based model
for link prediction in social networks,” in APWeb ’15.

X. Zheng, J. Han, and A. Sun, “A survey of location prediction on
twitter,” IEEE Transactions on Knowledge and Data Engineering, 2018.


http://www.city-data.com/zipmaps/Los-Angeles-California.html
http://bit.ly/2DZDxyD

	Introduction
	Motivation and Threat Model
	System Overview
	Data Labeling and Clustering
	Identifying Key User Locations
	Identifying Highly-Sensitive Places
	Implementation Details

	Data Collection
	Experimental Evaluation
	Home and Work Location Inference
	Inference of Sensitive Places
	Impact of Historical Data
	Performance evaluation

	Discussion and future work
	Related Work
	Conclusions
	References

