
CCSP: a Compressed Certificate Status Protocol

Antonios A. Chariton∗, Eirini Degkleri∗†, Panagiotis Papadopoulos∗†, Panagiotis Ilia∗†, and Evangelos P. Markatos∗†
∗University of Crete, Greece, csd3235@csd.uoc.gr

†FORTH-ICS, Greece, {degleri, panpap, pilia, markatos}@ics.forth.gr

Abstract—Trust in SSL-based communications is provided by
Certificate Authorities (CAs) in the form of signed certificates.
Checking the validity of a certificate involves three steps: (i)
checking its expiration date, (ii) verifying its signature, and
(iii) ensuring that it is not revoked. Currently, such certificate
revocation checks are done either via Certificate Revocation Lists
(CRLs) or Online Certificate Status Protocol (OCSP) servers.
Unfortunately, despite the existence of these revocation checks,
sophisticated cyber-attackers, may trick web browsers to trust a
revoked certificate, and believe that the revoked certificate is still
valid. As a result, the web browser will communicate (over TLS)
with web servers controlled by cyber-attackers.

Although frequently updated, nonced, and timestamped certifi-
cates may reduce the frequency and impact of such cyber-attacks,
they impose a very large overhead to the CAs and OCSP servers,
which now need to timestamp and sign on a regular basis all
the responses, for every certificate they have issued, resulting in
a very high overhead. To mitigate this overhead and provide
a solution to the described cyber-attacks, we present CCSP:
a new approach to provide timely information regarding the
status of certificates, which capitalizes on a newly introduced
notion called signed collections. In this paper, we present the
design, preliminary implementation, and evaluation of CCSP in
general, and signed collections in particular. Our preliminary
results suggest that CCSP (i) reduces space requirements by more
than an order of magnitude, (ii) lowers the number of signatures
required by six orders of magnitude compared to OCSP-based
methods, and (iii) adds only a few milliseconds of overhead in
the overall user latency.

I. INTRODUCTION

Transport Layer Security (TLS) and its predecessor, Se-
cure Sockets Layer (SSL), is the most popular standard for
secure Internet communications nowadays. More and more
web services are moving away from the traditional plaintext
HTTP protocol to the more secure HTTPS. Indeed, recent
results suggest that around 50% of the HTTP connections are
currently being implemented over HTTPS [19]. Although the
primary goal of TLS is to provide confidentiality and integrity
for the vast majority of the today’s online communications,
the provided security of TLS connections against potential
network attackers depends vitally on the correct authentication
and validation of the endpoints’ public-key digital certificates
presented during each connection establishment. Responsible
for issuing, validating, and revoking these digital certificates
is a Certificate Authority (CA): a third party trusted by both
communicating endpoints. Thus, when a web client connects
to a website and receives its certificate, it can trust that
this particular public key (contained in the certificate and
signed by the CA) indeed belongs to the website. As a
result, Certificate Authorities create a web of trust that enables
complete strangers (i.e., a web client and a web server) to
communicate with each other in a secure and trusted way.

Apart from issuing certificates, CAs may also need to revoke
certificates as well. For example, when a private key of a

website is stolen, the issued certificate needs to be revoked,
and users need to be updated as soon as possible in order to
no more trust web servers using this certificate. There are two
main ways for the web browsers to know when a certificate
has been revoked. The simplest and more traditional one is by
downloading the list of all revoked certificates, the Certificate
Revocation List (CRL), from the CA and locally lookup if the
certificate is included in the CRL. If included, it means that the
certificate has been revoked and should not be trusted anymore.
However, the increasing size of these CRLs [6] with median
size of 51 KB, reaching as large as 76 MB in some cases
[16], [20], has forced the clients to download CRLs rather
sporadically. Unfortunately, such sporadic updates of CRLs
leaves clients with a certain window of vulnerability: between
two successive downloads of the CRL clients may wrongly
consider a revoked certificate as valid.

To remedy this issue, i.e., to avoid downloading large
CRLs every once in a while, the Online Certificate Status
Protocol (OCSP) came to the rescue: CAs maintain available
servers, namely OCSP responders, which are able to respond
in real-time to queries about the revocation status of a single
certificate. More specifically, OCSP works as follows: when
a web client connects to a website and receives its certificate,
the client queries an OCSP responder about the revocation
status of the certificate. OCSP responders consult their local
up-to-date database and are usually able to respond back to the
browser, in most cases, in less than one second [21]. To avoid
replay attacks, web clients usually provide OCSP responders
with a cryptographic nonce and require OCSP responders to
digitally sign their reply, including the nonce.

To improve performance even further, some OCSP respon-
ders solicit the help of widely deployed Content Delivery
Networks (CDNs) [2], [26], such as Akamai [22], managing to
reduce their response time to less than a tenth of a second. In
the same spirit, DCSP [3], a newly introduced protocol, solicits
the help of DNS resolvers and proposes to store revocation
information in the publicly accessible DNS infrastructure.
With the help of DNS, and its associated lightweight UDP
protocol, DCSP is able to reduce end-user latency to just a
few tens of milliseconds.

Although OCSP and DCSP provide good performance and
timely information, they share a common characteristic: it is
the receiver of the certificate (i.e., the web browser) who has
to verify that the certificate is valid. That is, the receiver (i)
has to download the certificate from a web site and (ii) has
to verify that the certificate is still valid by contacting a third
party directory such as the OCSP responders, the CDNs, or
the DNS system. This usually incurs an extra TCP or UDP
connection to the web client increasing overhead accordingly.

OCSP Stapling provides a different type of solution: It



advocates that it is not the receiver but the supplier of
the certificate who has the responsibility to provide enough
evidence to convince the client that the certificate is valid. In
this aspect, the web server provides the web clients with two
pieces of information:

1) The certificate itself (much like previously).
2) Revocation information about the certificate, signed by

the issuer CA. This revocation information would be
practically the same as the reply of the OCSP responder. 1

To make it simple, the web server provides the web client (i)
with the certificate, and (ii) with a signed confirmation that
the certificate has not been revoked. OCSP Stapling is fast,
does not force the client to contact any third-party services,
and reduces the overhead to the minimum possible.

Unfortunately, OCSP Stapling is susceptible to man-in-the-
middle attacks. Indeed, an attacker who has managed to steal
the private key of a web server may provide a victim web
browser with the old (now revoked) public key and an old
signed confirmation that the certificate has not been revoked.
Since both the certificate and the confirmation are signed,
the victim browser has no other option but to accept the old
public key. Then, it will start communicating with the attacker
believing that it communicates with the legitimate web server.

One way to mitigate this attack is to timestamp the revo-
cation information before signing it and pushing it to web
servers to be served via OCSP Stapling. In this way, when a
client receives OCSP Stapling information it will first check
the timestamp of the information. It will accept the revocation
information only if the timestamp is recent: old timestamps are
probably a sign of man-in-the-middle attacks. Although fine-
grain timestamps may solve man-in-the-middle attack replays
by minimizing the window of vulnerability, they also impose a
tremendous load on the OCSP responders, which now need to
timestamp and sign revocation information for each and every
issued certificate every few seconds or so.

To address the overheads imposed by frequent timestamps
and signatures, in this paper we propose CCSP (Compressed
Certificate Status Protocol): a new approach for timestamping
and signing Certificate Revocation responses. CCSP is based
on signed collections which provide revocation information
not for a single certificate (like OCSP and OCSP Stapling do),
but for a collection of certificates. Since signed collections re-
quire just one signature for an entire collection of certificates,
they have the potential to reduce the number of signatures
needed and the associated overhead. Our approach saves more
than two orders of magnitude storage space compared to
traditional CRLs, and more than six orders of magnitude
signatures compared to traditional OCSP Stapling.

To summarize, we make the following contributions:
• We introduce a new abstraction: the abstraction of signed

collections that can be used to communicate revocation
information in a very compact form.

• We present the detailed design of CCSP: an extension
to OCSP and OCSP Stapling, which by using signed
collections manages to improve performance by several
orders of magnitude.

1Certificate Transparency [14], explained in depth in Section VIII, provides
a third piece of information as well: a signed proof that the certificate has
been included in a publicly-accessible Log.

• We present a preliminary implementation study of CCSP
to allow us to explore the tradeoffs of our approach.

• We present an evaluation of CCSP based on simulation
and analysis. Our results show that (i) CCSP is able to
pack revocation information for more than one million
certificates in less than 10 KB of space, (ii) it is able to
reduce the number of required signatures by more than
six orders of magnitude, and (iii) it requires an average
traffic rate of only a few bytes per second.

II. RELATED WORK

A. Revoke the trust from Certificate Authorities
Although today most CAs are considered trusted, there

exists a significant body of literature which assumes that
CAs should not be trusted and should be replaced by some
other mechanism. Perspectives [4], for example, is a project
which later inspired the Convergence [10], [17] strategy for
replacing CAs; it employs a crowd-sourcing network of
“notary servers”, that build a global database of the certificates
used by each site by regularly monitoring websites. These
notary servers can be maintained by anyone e.g., organizations,
institutions, private companies, the EFF, Google, Universities,
or even a group of friends. By allowing several entities to
maintain information about certificate status, the users are free
to pick the entity of their trust and query the validity of a
certificate. Unfortunately, this operation imposes a significant
amount of latency to the users’ browsing TLS session. To
make matters worse, to ensure the validity of the response the
user may need to query more than one entity and consider the
response of the majority, an operation that may sky-rocket the
certificate verification latency.

Over the past few years Certificate Transparency [14] (or
simply CT) has been widely popular. Aimed to address the
issue of rogue, or compromised, Certificate Authorities, CT
advocates that all valid certificates should be publicly and
widely known. To support this publicity, CT maintains several
independent certificate Logs: append-only repositories of all
known certificates. When a CA issues a certificate, it adds
the certificate to a Log and is given back a receipt (a signed
certificate timestamp (SCT)). When a client receives a certifi-
cate from a web site, it also demands the signed certificate
timestamp (SCT) as well: the proof that this certificate is
included in some publicly available Log. If the client does
not receive the receipt, it does not trust the certificate. Cer-
tificate Transparency is an excellent way to deal with rogue
or compromised CAs. Indeed, if a rogue CA includes its
fake certificates in some Logs it will be easily spotted by
the website owners, who periodically scan all Logs for fake
certificates. On the other hand, if the rogue CA does not
include its certificates in any Log, it will not receive the SCT
and thus, its web clients will not accept its certificates. In both
cases, rogue CAs will not be able to continue their nefarious
activities without being noticed.

Although CT is an excellent way to deal with rogue CAs,
it does not explicitly deal with revocation. Indeed, as noted
in the FAQ of the CT’s official website [15]: “Certificates
are revoked in the usual way and Certificate Transparency
does not change that. It provides a mechanism by which
you can know that a certificate needs to be revoked, but
does not itself handle revocation.” Having said that, there



exist some approaches to integrate revocation in CT. For
example, Revocation Transparency (RT) [13], provides a way
to supply fresh revocation information. Unfortunately, careful
studies of RT [23] suggest that the original RT proposal has
overhead linear to the number of revocations. As the number of
revocations increases with time, such an overhead is probably
prohibitive for most practical applications. Although recent
work has reduced the overhead to logarithmic [23], it may still
be high compared to other Certificate Revocation approaches
that may respond in (average) constant time.

B. Call DNS to the rescue
DNS-based Authentication of Named Entities (DANE) [11]

is another approach towards the direction of replacing the
Certificate Authorities. DANE leverages DNS infrastructure to
distribute the public key of the website. To achieve that, DANE
introduces a new type of DNS record, named TLSA, in which
stores the whole certificate of a domain and uses DNSSEC to
validate its integrity. Unfortunately, DANE is subject to man-
in-the-middle attacks. To mitigate such attacks, DANE may
use timestamped DNS records which, in turn, place a heavy
overhead in the signer of the certificate that have to timestamp
and sign each and every record frequently. This burden is also
transferred to the DNS infrastructure itself which now needs
to deal with orders of magnitude higher load than previously.

DCSP [3], a certificate revocation protocol, leverages the
existing DNS infrastructure to distribute certificate status in-
formation without abolishing the role of CAs. On the contrary,
DCSP assigns to the CAs the responsibility of maintaining and
signing the DNS records, guaranteeing this way their validity
and freshness. DCSP uses DNS as a fast cache and capitalizes
on multiple DNS TXT type records to allow CAs to publish
the revocation information of certificates. In this way (i) DCSP
achieves better performance than traditional OCSP, and (ii) it
preserves the privacy of the user’s browsing history.

However, utilizing the existing DNS infrastructure appar-
ently requires specific changes to the way CAs handle cer-
tificate revocation. In CCSPwe extend the current revocation
mechanism, thus allowing our approach to be more easily ap-
plicable. Finally, by further improving the grouping abstraction
of DCSP, we are able to significantly reduce the number of
signatures required by each CA.

C. The Google Approach
Google Chrome and the Chromium browser use CRLsets: a

compressed list of a small set of revoked certificates [1]. In this
way, web browsers may have handy revocation information
about a (small) set of revoked certificates so that most of the
time they will be able to check the revocation status quickly.
CRLsets have great performance when they encounter a hit,
but need to resort to OCSP (or similar) when the certificate
they are looking for is not in the CRLset. Given that CRLsets
cover less than 1% of revocations [16], there may be room for
further improvements.

D. Where does CCSP fit in the spectrum?
We view that CCSP is not competing to, but it is com-

plementing most of the previous approaches. By introducing
the abstraction of signed collections, CCSP is able to encode
revocation information not only for one certificate, but for a

large set of certificates into a very small space. This encoding
can be used in several existing revocation approaches that
would like to pack as much revocation information into as
little space as possible.

III. THE THREAT MODEL

In this paper we assume that the attacker is able to launch
a man-in-the-middle attack against the victim. This attack
can happen in a variety of ways, including, for example, (i)
the attacker controlling a public, free Wi-Fi, (ii) the attacker
controlling a VPN the victim uses, (iii) the attacker installing
a rogue Wi-Fi router, etc. In addition, we assume that the
attacker managed to get access, possibly through hacking, to
the private key of a web site. We finally assume that after
realizing this hacking event, the web site revokes its certificate.

By deploying such an attack the adversary is able to assume
the identity of a legitimate party, and by falsifying responses
from DNS and/or HTTP endpoints, can manage to successfully
impersonate this party. As a consequence, an adversary can
deceive users, making them to establish wrongly trusted TLS
connections with it and exchange secrets as if it was the actual
legitimate party. The goal of our approach is to make the client
aware of the impersonation attack in order for her to seize the
connection with the adversary soon enough to prevent any
possible leakage of private information.

A. Possible Attack Scenario
Based on the assumptions above, a possible attack scenario

may be the following: When a victim tries to connect to the
web site (whose certificate has been revoked), the attacker
(who managed to launch a man-in-the-middle attack) presents
the victim with the old (revoked) certificate, which was valid
sometime in the recent past. To convince the victim that the
certificate has not been revoked, the attacker will replay to the
victim an old but signed OCSP Stapling response claiming that
the certificate is still valid. Once presented with a signed OCSP
Stapling response, the victim’s web browser will assume that
the certificate is valid (even though it has been revoked) and
will start communicating with the attacker thinking that it is
communicating with the legitimate web site2.

Similarly to the case of OCSP Stapling, a man-in-the-middle
attack can be also launched in the case where OCSP responses
are served by a Content Delivery Network (CDN). The at-
tacker, who has managed to launch a man-in-the-middle attack,
is able to impersonate both the web site and the CDN-based
OCSP responder. When a victim tries to connect to the web
site, the attacker presents the victim with the old certificate.
Furthermore, the attacker, who is able to impersonate the
CDN-based OCSP responder, presents to the victim the old
but signed OCSP response, tricking the victim to believe that
the certificate is still valid. Then, the victim’s web browser
will start communicating with the attacker thinking that it is
communicating with the legitimate web site.

From that point onwards, the victim is in a downward spiral:
it will probably reveal its password, disclose personal informa-
tion, and, depending on the web site’s expected functionality,

2Several recent security incidents have exposed the problem of rogue CAs:
that is, CAs which provide bogus certificates or bogus information. The
recently proposed “Certificate Transparency” manages to uncover such rogue
CAs as explained in the related work section. However, the detection and
mitigation of such Rogue CAs is outside the scope of this work.



may suffer identity theft, may be tricked to install malware,
and may even suffer financial losses.

B. The Solution Framework
This is not a trivial problem to solve. By managing to issue a

man-in-the-middle attack, the attacker has enclosed the victim
in a fake virtual world and may provide fake information at
will. One way for the victim to break out of this fake world is
to ask for timely information: i.e., ask for information that is
timestamped by the current time and signed by a trusted third
party (such as a CA). In the context of OCSP Stapling this
would imply that CAs should frequently timestamp and sign all
OCSP Stapling responses. Thus, when the browser is presented
with a response that has an old timestamp, it will just reject
the response and its associated revocation information as stale.
Unfortunately, timestamping and signing all OCSP Stapling
responses very frequently (say every few seconds or so) may
place a tremendous burden on CAs and OCSP responders who
may have issued millions of certificates and are now required
to timestamp, sign, and distribute millions of certificates per
second. To reduce this overhead CCSP introduces signed
collections: an abstraction that packs revocation information
not for a single certificate, but for a collection of certificates
in a single response, and thus, reduces the associated number
of required signatures by several orders of magnitude.

IV. DESIGN

A. High-level Design
CCSP introduces the notion of Signed Collections: an ab-

straction that enables us to pack revocation information about
several certificates in a single OCSP response. This response,
i.e., the signed collection, is actually a bitmap. Each bit of
the bitmap corresponds to the revocation status of a single
certificate: if the bit is “1”, the certificate (which corresponds
to this bit) is revoked; if the bit is “0”, the certificate is still
valid. We call these bits Revocation Bits, because they provide
information about the revocation status of certificates.

When a certificate C is created, the CA assigns it to a signed
collection SC. The name of this signed collection as well as the
index in the collection, which corresponds to the revocation
status of this certificate, is included in the certificate itself. So,
when a client connects to a web site, it receives the certificate
C, which contains the name of the signed collection (i.e., SC)
and the index i of the certificate within the collection. Then,
if the client is provided with an OCSP Stapling response, it
will contain SC. If the web server does not support OCSP
Stapling, the browser will fetch SC from an OCSP Responder,
possibly hosted in a CDN near the user. Finally, the client will
check the certificate’s validity at bit SC[i]. If this SC[i] value
is “1”, the certificate has been revoked. If this value is “0”,
the certificate is still valid.
Compression. It seems that in a Signed Collection (a bitmap)
of size S we can fit revocation information for about S cer-
tificates and no more than that. Fortunately, in our design we
show that it is possible in S bits to fit revocation information
for more than S certificates. Although this may sound counter-
intuitive, we can easily achieve it using compression. Actually,
we compress along two dimensions: (i) space, and (ii) time.
i. Space: If we take a careful look at a signed collection
SC, we realize that most of the bits in the bitmap SC[] are

“0”. This should be expected: most of the time, most of the
certificates are not revoked: that is why most of the bits are
“0”. Experimental results suggest that for most CAs less than
1% of the certificates are revoked [16], reaching as low as
0.2% in some cases [7]. This implies that roughly more than
99% of the bits in the SC[] bitmap are “0”. Thus, simply
compressing such a bitmap may reduce its size significantly.
For the purposes of this work we support two compression
algorithms: (i) the DEFLATE compression algorithm which is
a variation of LZ77, and (ii) the Golomb algorithm [9].
ii. Time: Recall, that in CCSP we timestamp and sign each
signed collection periodically - once in every, what we will
call from now on, epoch. Taking a closer look at these periodic
releases of a given signed collection, we see that they are very
similar to each other. That is, each periodic release of a signed
collection has little, if any, changes compared to the release of
the same signed collection of the previous epoch. Indeed, in
the time period of an epoch, which is in the range of seconds
or at most minutes, we expect only a very small number of
certificates, if any at all, to be revoked. Thus, if instead of
releasing each signed collection from scratch at the beginning
of each epoch, we release the signed collection’s changes (its
delta compared to a previous version), then we will be able to
reduce the size of the released signed collections significantly.

To put the compression algorithm in focus and explain the
two forms of redundancy, we divide the time into epochs and
eons. For the purposes of this work, an eon is a time interval in
the range of hours and an epoch is a time interval in the range
of minutes or seconds. Using this terminology, each signed
collection has to be downloaded once per eon, while at each
epoch we need to download only the Signed Collection’s delta
from the current eon.

B. Detailed Design
Certificates. CCSP extends the definition of the Certificate
with two fields:
• “SignedCollection”: this is the OCSP URL of the Signed

Collection SC in which this certificate belongs. This field
contains the OCSP Responder and path to obtain the
needed SC. It always starts with “http://” or “https://”.

• “SignedCollectionIndex”: this is the index in the Signed
Collection bitmap. The bit pointed to by this index
contains the revocation information of the certificate.

OCSP Responders. In order to implement CCSP, some
changes are required in the OCSP Responders. To successfully
serve the Signed Collections, each OCSP Responder must
accept HTTP “GET” requests to the path “/ccsp/SC-UID/sc”,
where SC-UID is the unique identifier of each Signed Col-
lection. This path, up to and including SC-UID is contained
in the “SignedCollection” field of the certificate. In order to
serve the deltas within an eon, the OCSP Responder must ac-
cept HTTP “GET” requests to the path “/ccsp/SC-UID/delta”,
where SC-UID is, of course, the unique identifier of the Signed
Collection. Note that the users are able to receive only the
latest delta and not the previous ones since they are not
needed to retrieve the current state. The reason behind the
selection of these paths is that there is no special software
modification required and a simple web server can be used to
serve everything as static content. This is especially useful for
CAs that employ CDNs, because they only need to push all the



files once and have the CDN cache them globally, instead of
requiring an origin pull in case of a cache miss. This ensures
100% cache hit rates and also does not require any additional
code that may introduce complexity and/or bugs.
OCSP Stapling Web Servers. Web Servers can support
CCSP and accelerate the user experience by serving the Signed
Collections during the TLS handshake. This eliminates the
need for a connection to an OCSP Responder. In order to
support this feature, web servers need to be able to send two
stapled responses: (i) the Signed Collection for this eon, and
(ii) the Signed Collection’s delta for this epoch. Although
sending both responses will not add significant size to the
response, the client can specifically request only the delta if
it already possesses the latest Signed Collection (i.e., received
from a previous connection). These responses can be served by
the existing OCSP Stapling mechanism of web servers, with
only slight modification.
Signed Collections. A Signed Collection is a response pro-
vided by an OCSP Responder and is updated every eon. It
contains the following fields:
• VERSION: the version of CCSP used, as an 8-bit un-

signed integer, to accomodate future changes
• HEADER: a 16-bit field with only the first bit currently

used as a “delta bit”: if set to “1”, this response is a delta
and not a full Signed Collection

• SIZE: the size of the compressed bitmap, in bytes, as a
32-bit unsigned integer

• BM: the compressed bitmap, in raw bytes
• SC-UID: the unique identifier of the Signed Collection,

in ASCII, null-terminated, and exactly as it appears in
the “Signed Collection” part of the certificate

• EON: the eon identifier, i.e., the date, as a 64-bit unsigned
integer

• COMPRESSION: the ID of the compression type used
in the bitmap, 3 as a 16-bit unsigned integer

• SIGNATURE: the cryptographic signature by the CA
which can be calculated by signing a cryptographic hash
of the concatenation of the fields above, in raw bytes

Signed Collection Deltas. For every epoch within an eon,
a new delta needs to be produced. This delta consists of the
following fields, with the same size and type as the ones above:
• VERSION: the version of CCSP used
• HEADER: a 16-bit field, just like above
• SIZE: the size of the included data
• DATA: the data of the delta, in raw bytes
• SC-UID: the unique identifier of the Signed Collection of

this delta, exactly as it appears in the “Signed Collection”
part of the certificate,

• EPOCH: the epoch identifier of the current delta
• COMPRESSION: the ID of the compression type used

for the data, just like previously
• SIGNATURE: the cryptographic signature by the CA,

calculated similarly to the signature of Signed Collections
A delta can be computed in two ways. It depends on the CA

and can change between epochs. The first way is by calculating

3We currently support Golomb and DEFLATE compression. More com-
pression algorithms can be easily added. The current IDs are “0” for no
compression, “1” for DEFLATE, “2” for Golomb, and “3” for Index Based
Compression.

the output of the bitwise “XOR” of the Signed Collection
bitmap in the current eon with the latest state of the bitmap in
the current epoch. This will produce a new bitmap in which
all bits will have a value of “0” unless their corresponding
certificates have been revoked within the current eon. This
bitmap is then compressed with an algorithm and added in the
“DATA” section of the delta. The client can decompress and
reconstruct the latest bitmap by performing bitwise “XOR”
between the latest Signed Collection and the latest delta.

The second way involves Index-Based Compression. This
method does not create a bitmap but a list of the indices of
the positions that turned into “1”. The CA calculates a bitmap
with the method used above and then determines the positions
of “1”s in this bitmap and appends them in the “DATA” area
of the response, as 32-bit unsigned integers. The client then
switches all bits in the Signed Collection to “1” if their index
in the Signed Collection is included in this list.

V. IMPLEMENTATION

To assess the feasibility and effectiveness of CCSP, we
implemented a preliminary prototype of our approach. Our
implementation is based on rapid prototyping by putting
together off-the-self components including: (i) the wget open
source tool [24] to retrieve web pages and (ii) the GnuTLS
[18] library, to allow us to perform TLS handshakes, validate
the received certificates and check their status (either by
contacting the CAs’ OCSP server or by using the stapled
OCSP responses.).

At first, we modified the server-side component of GnuTLS
to provide custom certificate status responses during a TLS
connection, and its associated client-side component to prop-
erly handle and parse these custom responses. After that, we
set up a standalone server, configured to serve the CCSP
responses. For the client side, we compiled wget using the
modified version of the GnuTLS library. An example usage
includes a client, which connects to the web server via wget
and starts a TLS handshake. The server provides the Signed
Collection (and delta) to wget, which in turn, passes it to the
GnuTLS library (client-side) for validation.

Our preliminary implementation suggests that the necessary
changes are confined to no more than a few hundred lines
of code (excluding the libraries for compression and signing
which are already available).

VI. ANALYSIS

For the purposes of system description so far, we have
assumed that an eon is a time interval in the range of several
minutes or hours. One might wonder, however, how frequently
we should start a new eon. Actually, there is a very interesting
trade-off here: a very short eon will force CCSP to transfer the
entire revocation bitmap (even if compressed) frequently. On
the other hand, a very long eon will allow the deltas to slowly
increase in size until they are not space-efficient anymore. In
this section we will try to find an optimal value for the size
of the eon.
Assumptions. In the rest of this analysis we make the
following assumptions:
• the length of the eon (in certificate revocations) is x.
• the size of the entire bitmap in bytes (compressed with

Golomb compression) at the start of an eon is S.



Notation Explanation
S : size of compressed bitmap
x : number of revocations per eon
r : size in delta needed for each revocation
k : average time (in epochs) between two

revocations of any certificate in a signed collection

TABLE I. Summary of Notation

• we expect to have one certificate revocation in the bitmap
every k epochs.

• each revocation will increase the delta by size r.
Analysis. Based on those assumptions, it seems that after
the 1st revocation, the deltas will have size r, after the 2nd
revocation: 2r, after the 3rd revocation: 3r, ..., and after x
revocations the deltas will have size xr. This implies that after
x revocations we will have sent kx deltas (recall that we assume
that we have 1 revocation every k epochs) with a total size of:

x

∑
i=0

kir =
krx(x−1)

2

So, in the duration of x revocations the total information
transferred (initial bitmap plus deltas) will be:

S+
krx(x−1)

2
So, the average size of deltas per epoch will be:

I(x) =
S
kx

+
r(x−1)

2
(1)

To find the optimal value of x we will just need to take the
derivative of the above size of deltas and solve for x. So:

dI
dx

=−S/(kx2)+ r/2,

which when solved for x gives the optimal value of x to be:

x =
√

2S/(kr) (2)

The actual values of S, k, and r may vary from system
to system and thus the optimal value of x may slightly
change. For the purposes of illustration let us assume some
reasonable values for S, k, and r and try to calculate the
bandwidth needed to support CCSP. Our experiments in the
next section will show that we need less than 10 KB to store
revocation information for one million certificates and thus a
reasonable value for S would be: 10 KB. The choice for r
is straightforward: 4 bytes - the size of a 32-bit long word.
Finally for k we assume a rather frequent certificate revocation
process: one revocation per each epoch, so k is 1. Plugging
these numbers in equation 2 gives us an x close to 71. This
implies that every 71 epochs or so, we should start a new
eon. The average information that will be transfered per epoch
(from equation 1) would be:

I(x) =
S
kx

+
r(x−1)

2
or

I(x) =
S

k
√

2S/(kr)
+

r(
√

2S/(kr)−1)
2

which implies that at each epoch we need to transfer the
following amount of bytes:

I(x) =

√
2rS
k
− r/2 (3)

For the values of S, k, and r, which we have assumed, the
above equation implies that we need to transfer an average
of 284 bytes per epoch. Given that each epoch is around 60
seconds, we need to transfer about 5 Bytes per second which
is a trivial overhead to pay by today’s standards.

VII. SIMULATIONS

A. The effect of Spatial Redundancy: how much space do you
need to store one million bits?

At first, we set out to explore how effective compression is.
For the purpose of this study we assume that we have a signed
collection of one million revocation bits and we would like to
find how much space it needs to be stored. Apparently, in the
absence of compression we would normally need 1,000,000
(certificates) / 8 (bits per byte) = 122.07 KB to store 1 million
revocation bits. However, CCSP employs spatial compression
using LZ77 or Golomb which implies that we may be able to
“squeeze” 1 million bits in less than 122 KB.

Obviously, the effectiveness of compression depends on the
type of data we want to compress. Indeed, if we want to
compress random data (e.g., a random sequence of “1” and “0”
generated by a perfect random number generator with equal
probability each), then compression will have little effect:
the data will be “too random” to be compressed efficiently.
On the other hand, if the data consist only (or mostly) of
“0”, then compression will be very effective. In our case,
the effectiveness of compression depends on the number of
Revocation bits which will be “one”, which is basically the
number of revoked certificates. Although the percentage of
revoked certificates may vary form one CA to another, it is
usually in the range of 1%. Actually “Let’s Encrypt”, one
of the largest and most popular CAs, reports less than 0.2%
revoked certificates [7].

Figure 1 shows how much space is needed to store 1 million
Revocation Bits using the two compression approaches we
employ: LZ77 (CCSP-LZ77) and Golomb (CCSP-Golomb) as
a function of the percentage of revoked certificates. The first
thing we notice it that both versions of CCSP (i.e., both CCSP-
LZ77 and CCSP-Golomb) perform well. Indeed, for revocation
rate close to 1% CCSP-Golomb requires roughly 8.8 KB.
For revocation rate close to 0.2% the space requirements for
CCSP-Golomb drops to just a bit higher than 1 KB: two
orders of magnitude less space than the “no compression”
case. CCSP-LZ77 is a bit higher but stays in the same range.
That means preferring LZ77 due to its easier implementation,
wide adoption by browsers, speed, and lower memory footprint
will come at minimal bandwidth cost, compared to Golomb.

What we learn from this Figure is that it is possible to hold
revocation information for millions of certificates in just a few
KB of space.

We believe that these results debunk any concerns about
the space needed to hold revocation information and open the
road for CCSP and similar solutions to certificate revocation.

Finding: 1 KB of space is all you need to store
revocation information for one million certificates.

B. Would Bloom Filters achieve better compression?
CCSP proposes an exact way to representing Revocation

Bits: it uses one bit for each certificate; the value of the
bit represents whether the certificate is revoked or not. On



 1

10

100

0.10.20.30.40.50.60.81.01.52.0

S
iz

e
 o

f 
S

ig
n

e
d

 C
o

lle
c
ti
o

n
 (

K
B

)

Percentage of Revoked Certificates

uncompressed
CCSP - LZ77 compression

CCSP - Golomb compression

Fig. 1: Size of a Signed Collection of 1M Revocation Bits.
Without compression it would require 122 KB to be stored.
Both compression algorithms of CCSP can reduce the size
needed by one to two orders of magnitude.

the other hand, it has been proposed that Bloom Filters
may possibly reduce space requirements [16] compared to
exact methods. Although Bloom filters are very efficient at
representing sets of objects using only a very small amount
of memory, they do suffer from false positives. In our case
this means that it is possible that a non-revoked certificate can
be reported by Bloom Filters as revoked (i.e., false positive).
To mitigate false positives, Bloom Filters may fall back to
search the entire bitmap (or the entire Certificate Revocation
List) when they have a false positive. Actually, since Bloom
Filters can not distinguish false positives from true positives,
they need to consult the entire list whenever they encounter a
positive (False or True). Despite their false positives, Bloom
Filters have small space requirements and we would like to
explore what are their space needs compared to CCSP.

For the purposes of this evaluation, we assume that we
have 1 million certificates, a small percentage of which are
revoked. This information can be stored as a signed collection
(much like CCSP does) or as a Bloom Filter (much like it was
proposed in [12]). Note that the actual space requirement for
Bloom Filters is influenced by the false positive rate they are
willing to tolerate. Indeed, the lower the false positive rate, the
larger the number of “0” they will have and thus, the larger
the size needed by the Bloom Filters. Typical false positive
rates in the literature range between 0.1% and 1%. Higher
false positive rates may nullify the speed benefits of Bloom
Filters and lower false positive rates may result in extremely
high space requirements.

In this experiment, we find the space requirements of Bloom
Filters for false positive rates between 0.1% and 1%. For
both CCSP and Bloom Filters we use Golomb compression
to reduce their size to (almost) the minimum possible.

Figure 2 plots the size of the signed collection of CCSP-
Golomb and the size of the Bloom Filter as a function of
the percentage of the revoked certificates. We see that for a
revocation rate of about 1% the size required by CCSP is a
bit less than 10 KB - as expected. This size increases with
the higher percentage of revoked certificates and reaches a
bit more than 30 KB for 5% revoked certificates. In general,
Bloom Filters (both for 1% and for 0.1% false positives) seem
to require more space than CCSP-Golomb. If we focus to
percentages (or revoked certificates) smaller than 1% (inset

 0

20

40

60

80

100

120

140

1.0% 2.0% 3.0% 4.0% 5.0%

S
p

a
c
e

 (
K

B
)

Percentage of Revoked Certificates

Bloom Filters-0.1%
Bloom Filters-1%

CCSP-Golomb

 0

 5

10

15

0.5% 1.0%

4.6 KB
5.2 KB

 0

 5

10

15

0.5% 1.0%

Fig. 2: Space required to store revocation information for one
million certificates.

 0

20

40

60

80

100

120

140

160

0 5 10 15 20

T
L

S
 H

a
n

d
s
h

a
k
e

 L
a

te
n

c
y
 (

m
s
)

Signed Collection Size (KB)

Baseline
CCSP

Fig. 3: TLS Handshake Latency. CCSP adds very little latency:
2.5 ms for signed collection size of 5 KB, while it adds less
than 5 ms for very large signed collections of 20 KB.

Method Privacy Low Number
of Signatures

Low
Latency

Freshness of
Information

OCSP-CDN 7 7 X ≈
OCSP 7 7 7 X

OCSP Stapling X ≈ X ≈
CRLs X X ≈ ≈
CCSP X XX X X

TABLE II. Summarising table of the comparison results

plot), the size required for Bloom Filters (1%) is barely
smaller than the size required for CCSP. For example, for
a percentage of revocation certificates equal to 0.5%, CCSP-
Golomb requires 5.2 KB of space, while “Bloom Filters-1%”
require 4.6 KB, and “Bloom Filters-0.1%” require 6.4 KB. It
is true that for 0.5% revocation rate “Bloom Filters-1%” seem
to need about 10% less space than CCSP-Golomb but they
have a hidden cost: false positives. Indeed, in 1% of the cases
they will require the clients to consult the entire CRL, which
implies an extra TCP connection to the CA. Since, at the time
of this writing, the benefits of Bloom Filters (as a compression
function) are not really clear compared to other methods (e.g.,
Golomb compression), we have not included them among
the compression functions in the “Signed Collections” record.
Since however, the record allows for any kind of compression
functions, we do not preclude their possible inclusion in the
future.

Finding: Bloom Filters may decrease space require-
ments but only marginally. Golomb compression is
already very effective at reducing space.



C. What if Heartbleed happens again?

Although most of the time revocations would come at a
slow pace, there exist rare cases where massive revocations
will be initiated. Take for example the recent Heartbleed bug
which forced a large number of certificates to be revoked [5].
What would the performance of CCSP be? Would it collapse?
or would it be able to tolerate the blow? Would web servers
(that use OCSP stapling) and CDN networks (that serve CDN-
based OCSP) create an unreasonable amount of traffic?

To drive our answers we use real statistics from Heartbleed
[5]. According to them, the largest revocation burst following
Heartbleed was from GlobaSign which revoked 56,353 certifi-
cates over 2 days, which amounts to just below about 20 revo-
cations per minute, or about 20 revocations per epoch, since
an epoch is about one-minute long. These revocations will
create 71 deltas with a total size of: ∑

60
i=1 20× i×4 = 138KB,

which will create a traffic of about 0.032 KB per second.
Adding to this the traffic needed to transfer one bitmap per eon
(=1,000,000/8/72/60/2014 = 0.028 KB per second). Thus,
the total traffic that will be created is 0.032+0.028 = 0.06KB
per second. Thus, the amount of traffic due to revocation that
needs to be transferred between a CA and a CDN is in the
range of 0.06 KB per second. Given the high capacity networks
that CDNs employ, it seems that this 0.06 KB per second is
a tiny percentage they should not worry about. Given that
each eon contains around 71 epochs, and that each epoch
contains around 60 seconds, these 138 KB would amount for
138/71/60 = 0.032 KB per second.

Finding: Even during a new, Heartbleed bug the
traffic generated due to CCSP-based revocation in-
formation will be only around 0.03 KB per second.

D. Latency

In this section we emulate the latency added by the signed
collections. We use OpenSSL to connect to a web server and
measure the latency incurred for various sizes of signed col-
lections. We see (Figure 3) that when we use OCSP Stapling
without signed collections, the TLS handshake latency is about
120 ms. When we add signed collections, the latency increases
only by a handful of milliseconds. We must note, however, that
Figure 3 reports only the TLS handshake latency. If we factor
in the data transfer latency as well (i.e., the time it takes to
transfer an entire web page) the overhead of signed collections
will be much smaller in relative terms. In terms of size, the
average TLS handshake is about 4 KB, out of which 0.5 KB
is the Stapled OCSP Response. Therefore, a 5 KB Signed
Collection would make the TLS handshake 8.5 KB, which is
insignificant compared to the average size of a website, which
is about 2 MB [8] [25].

Finding: CCSP adds only 2-3 milliseconds in the
overall end user latency compared to OCSP stapling.

E. Summary

To summarize and put our findings in perspective, Ta-
ble II compares CCSP and the most widespread previous
approaches: CRL, OCSP, OCSP-CDN, and OCSP Stapling
along four important dimensions: (i) privacy, (ii) number of
signatures required, (iii) latency, and (iv) freshness of infor-
mation. We see that CCSP (i) along with OCSP-stapling and

CRLs protect user’s privacy, (ii) requires much less signatures
than all versions of OCSP, (iii) achieves low latency, and (iv)
provides fresh (timely) information. We see that along all
dimensions (i.e., privacy, signatures, latency and freshness),
CCSP is comparable to or exceeds the best of the rest of the
approaches. Indeed, no approach of the above mentioned ones
comes close to CCSP along all the dimensions studied.

VIII. DISCUSSION

A. OCSP
To avoid man-in-the-middle replay attacks OCSP enriches

each and every OCSP request with a nonce and signs each
and every reply including the nonce in the signature. This use
of nonces and OCSP has two major disadvantages:
• Loss of privacy: If web clients check each and every

certificate with the OCSP server, then OCSP servers can
learn the browsing history of web clients.

• Low Performance: recent OCSP requests are served by
CDNs (Content Delivery Networks) in just a few tens of
milliseconds (compared to hundreds of milliseconds that
OCSP servers need to reply). Unfortunately, requests that
contain a nonce are treated by CDNs as cache misses.
This implies that they are not served by the fast CDNs
but they are served by the slower OCSP servers.

We believe that the introduction of timestamped signed
collections can substitute the use of nonces. That is, instead
of requesting signed nonces, web clients may request times-
tamped signed collections. Alternatively, one may see this
as defining the nonce to be the current epoch number. The
introduction of timestamped signed collections in OCSP has
several advantages:
• Preservation of Privacy: OCSP servers will know that

web clients are interested in one of the web sites of a
signed collection but they will not know which one. If
there is a large number of web sites in a collection (say
1 million) then the OCSP server can get practically no
information on what the users are interested in.

• Fast Response: OCSP responses with timestamped
signed collections can be served by CDNs. Since they
are already signed, they do not need to be forwarded to
the OCSP server and they can be treated as a cache hit
by nearby CDNs.

• Lower number of signatures: Timestamped Signed
Collections require one signature per one million sites per
epoch. On the contrary, nonces require one signature per
web site per client request - several orders of magnitude
more signatures.

Therefore, the use of timestamped signed collections instead
of nonces, can be used by OCSP to (i) alleviate worries about
the user’s privacy, (ii) improve performance via using CDNs,
and (iii) significantly reduce the number of signatures required.

B. CRLs
CCSP has demonstrated that revocation information for as

many as 1M sites can fit in as little as 10 KB of space. This can
mean a breakthrough for CAs that use CRLs. Indeed, Signed
Collections imply that CAs now may send information about
all their certificates (not just the revoked ones) in just a few
KB of space. If combined with deltas the space requirements



will be reduced to less than 1 KB. Thus, instead of needing
tens or hundreds of KB, CRLs (with appropriate compression)
may now be transferred in less than 1 KB - one to two
orders of magnitude space improvement. Another benefit of
CCSP that comes with its size reduction is freshness. If users
have to download smaller files, it means that these files can
be downloaded more frequently, and if they also contain
information about non-revoked certificates, it means that they
have to be downloaded less times. This is one of the reasons
that CCSP focuses on freshness with epochs and eons.

C. How about corrupted CAs?
Recent incidents suggest that there may exist corrupted CAs.

These CAs may issue fake new certificates and/or may “un-
revoke” several revoked certificates. Unfortunately, this is true:
rogue CAs may significantly compromise any communication
that uses their “signed” certificates. Although an important
problem, dealing with corrupted CAs is outside the scope of
this paper. Fortunately, there have been several approaches (as
described in section II) that deal with corrupted CAs.

D. Why should the client care for one million certificates?
In this paper, we present an approach on how to deal with

millions of certificates. However, the vast majority of the
clients may access only a few dozen of websites and thus
care about the freshness of those certificates only. As a result,
one might feel that the proposed approach may add unnec-
essary overhead. Fortunately, CCSP has the same overhead
independent of whether the client accesses one hundred sites
or one million sites. This is because with the use of (i) com-
pression and (ii) deltas we managed to reduce the transferred
information to just a few KBytes. Consequently, any further
reductions may provide no really visible improvements.

IX. CONCLUSION

In this paper we introduced a new approach for certificate
revocation checking: CCSP. Based on the newly-introduced
notion of signed collections, CCSP is able to resist man-in-the-
middle attacks with much better performance than previously-
proposed approaches. Indeed, by using bitmaps and aggressive
time- and space-based compression, CCSP is able to pack re-
vocation information about one million certificates in less than
10 KB. CCSP significantly reduces the number of signature
operations needed by OCSP servers and CAs - by as much as
six orders of magnitude in some cases. We believe that with
the increasing percentage of encrypted Internet Traffic, and the
widespread awareness about certificate validity, the benefits of
our approach are bound to increase in the future.

X. ACKNOWLEDGMENTS

This work was supported by the project GCC, funded by
the Prevention of and Fight against Crime Programme of the
European Commission – Directorate-General Home Affairs
under Grant Agreement HOME/2011/ISEC/AG/INT/40000
02166, the FP7 project iSocial ITN, funded by the European
Commission under Grant Agreement No. 316808 and the
project SHARCS, under Grant Agreement No. 644571. In
addition, this project has received funding from the European
Union’s Horizon 2020 research and innovation programme un-
der the Marie Sklodowska-Curie grant agreement No 690972.

The paper reflects only the authors’ view and the Agency is not
responsible for any use that may be made of the information
it contains.

REFERENCES

[1] Adam Langley. Revocation checking and Chrome’s CRL.
https://www.imperialviolet.org/2012/02/05/crlsets.html.

[2] R. F. Andrews and Q. Liu. Accelerating ocsp responses via content
delivery network collaboration, Oct. 9 2013. US Patent App. 14/050,245.

[3] A. A. Chariton, E. Degkleri, P. Papadopoulos, P. Ilia, and E. P. Markatos.
DCSP: Performant certificate revocation a dns-based approach. In
Proceedings of the 9th European Workshop on System Security, EuroSec
’16, 2016.

[4] A. P. Dan Wendlandt, David G. Andersen. Perspectives: Improving
ssh-style host authentication with multi-path probing. In USENIX 2008
ATC.

[5] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li,
N. Weaver, J. Amann, J. Beekman, M. Payer, and V. Paxson. The
matter of heartbleed. In Proceedings of the 2014 Conference on Internet
Measurement Conference.

[6] C. Ellison and B. Schneier. Ten risks of PKI: What you’re not being told
about public-key infrastructure. Computer Security Journal, 16(1):1–7,
2000.

[7] L. Encrypt. Let’s encrypt stats. https://letsencrypt.org/stats/.
[8] Gigaom. The overweight web: Average web page size is up 15% in

2014. https://gigaom.com/2014/12/29/the-overweight-web-average-web-
page-size-is-up-15-in-2014/.

[9] S. Golomb. Run-length encodings. IEEE Transactions on Information
theory, 12(3):399–401, 1966.

[10] D. Goodin. Qualys endorses alternative to crappy ssl system.
http://www.theregister.co.uk/2011/09/30/qualys endorses convergence/.

[11] P. Hoffman and J. Schlyter. The DNS-based authentication of
named entities (DANE) transport layer security (TLS) protocol: TLSA.
https://tools.ietf.org/html/rfc6698, 2012.

[12] A. Langley. Smaller than bloom filters.
https://www.imperialviolet.org/2011/04/29/filters.html.

[13] B. Laurie and E. Kasper. Revocation transparency.
http://www.links.org/files/RevocationTransparency.pdf.

[14] B. Laurie, A. Langley, and E. Kasper. Certificate transparency.
https://tools.ietf.org/html/rfc6962.

[15] B. Laurie, A. Langley, and S. McHenry. Certificate transparency.
https://www.certificate-transparency.org/faq.

[16] Y. Liu, W. Tome, L. Zhang, D. Choffnes, D. Levin, B. Maggs, A. Mis-
love, A. Schulman, and C. Wilson. An End-to-End Measurement of
Certificate Revocation in the Web’s PKI. In Proceedings of the 2015
ACM Conference IMC.

[17] M. Marlinspike. Convergence. http://www.convergence.io/details.html.
[18] N. Mavrogiannopoulos and S. Josefsson. The gnutls transport layer

security library. http://www.gnutls.org/.
[19] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia,

M. Munafò, K. Papagiannaki, and P. Steenkiste. The cost of the ”s”
in https. In Proceedings of the 10th ACM International CoNEXT ’14.

[20] Netcraft. Crl sites ordered by average body size.
http://uptime.netcraft.com/perf/reports/performance/CRL.

[21] Netcraft. Total http time of ocsp sites.
http://uptime.netcraft.com/perf/reports/performance/OCSP.

[22] E. Nygren, R. K. Sitaraman, and J. Sun. The akamai network: A platform
for high-performance internet applications. SIGOPS Oper. Syst. Rev.

[23] M. D. Ryan. Enhanced certificate transparency and end-to-end encrypted
mail. In 21st Annual Network and Distributed System Security Sympo-
sium, NDSS, 2014.

[24] G. Scrivano and H. Niksic. Gnu wget 1.18 manual.
https://www.gnu.org/software/wget/.

[25] SOASTA. Page bloat update: The average web page is more than 2 mb in
size. https://www.soasta.com/blog/page-bloat-average-web-page-2-mb/.

[26] L. Zhu, J. Amann, and J. S. Heidemann. Measuring the latency and
pervasiveness of TLS certificate revocation. In Proceedings of the 17th
International Conference, PAM’16.


